摘要
设q为素数p的幂,F_q^n为有限域F_q的n(n≥2)次扩域.熟知k-型高斯正规基当k=1时为Ⅰ型最优正规基,当q=k=2时为Ⅱ型最优正规基.本文证明了k-型高斯正规基生成元的迹函数为-1,确定了2-型高斯正规基的复杂度及其对偶基的生成元与复杂度.
Let q be a power of the prime p and Fq- the extension of the finite field Fq with degree n(n≥2). It's well-known that the type k Gaussian normal basis of Fq^n over Fq is a type Ⅰ or type Ⅱoptimal normal basis depends on k= 1 or q= k= 2 correspondingly. In the present paper, the authors prove that the trace of a generator of the type k Gaussian normal basis of Fq. over Fq equals to - 1. For the case k= 2, they determine the dual basis B of N and the complexities for N and B.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期1221-1224,共4页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金科研重大项目(10990011)
教育部博士点科研专项基金新教师课题基金(20095134120001)
四川省教育厅自然科学科研重点项目(09ZA087)
关键词
有限域
高斯正规基
对偶基
本原元
复杂度
finite field, Gaussian normal basis, dual basis,primitive element, complexity