期刊文献+

有限域上的2-型高斯正规基及其对偶基(英文) 被引量:6

The type 2 Gaussian normal basis and its dual basis over finite fields
原文传递
导出
摘要 设q为素数p的幂,F_q^n为有限域F_q的n(n≥2)次扩域.熟知k-型高斯正规基当k=1时为Ⅰ型最优正规基,当q=k=2时为Ⅱ型最优正规基.本文证明了k-型高斯正规基生成元的迹函数为-1,确定了2-型高斯正规基的复杂度及其对偶基的生成元与复杂度. Let q be a power of the prime p and Fq- the extension of the finite field Fq with degree n(n≥2). It's well-known that the type k Gaussian normal basis of Fq^n over Fq is a type Ⅰ or type Ⅱoptimal normal basis depends on k= 1 or q= k= 2 correspondingly. In the present paper, the authors prove that the trace of a generator of the type k Gaussian normal basis of Fq. over Fq equals to - 1. For the case k= 2, they determine the dual basis B of N and the complexities for N and B.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期1221-1224,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金科研重大项目(10990011) 教育部博士点科研专项基金新教师课题基金(20095134120001) 四川省教育厅自然科学科研重点项目(09ZA087)
关键词 有限域 高斯正规基 对偶基 本原元 复杂度 finite field, Gaussian normal basis, dual basis,primitive element, complexity
  • 相关文献

参考文献14

  • 1Wassermann A.Konstruktion von Normalbasen[J].Bayreuther Mathematische Schriften,1990,31:155.
  • 2Ash D,Blake I,Vanstone S.Low complexity normal bases[J].Discrete Applied Math,1999,25:191.
  • 3Shuhong G.Abelian Groups,Gauss periods,and normal bases[J].Finite Fields Appls,2001,7:149.
  • 4Davenport H.Bases for finite fields[J].J London Math Soc,1986,43:21.
  • 5Blake I,Shuhong G,Mullin R,et al.Applications of finite fields[M].New York:Kluwer Academic Publishers,1993.
  • 6廖群英.关于有限域上一类特殊的对偶基[J].四川大学学报(自然科学版),2005,42(1):41-46. 被引量:8
  • 7Qunying L,Qi S.Normal bases and their dual-bases over finite fields[J].Acta Mathematic Sinica:English Series,2006,22(3):845.
  • 8Qunying L,Qi S.On multiplication tables of optimal normal bases over finite fields[J].Acta Mathematiea Sinica:Chinese Series,2005,48(5):947.
  • 9Mullin R,Onyszchuk I,Vanstone S,et al.Optimal normal bases in GF(pn)[J].Discrete Applied Math,1988-1989,22:149.
  • 10Lidl R,Niederreiter H.Finite fields[M].Cambrige:Cambrige University Press,1987.

二级参考文献16

  • 1LiaoQY SunQ.Onmultiplicationtablesofnormalbasesandtheir-dualbasesoverfinitefields[J].数学进展,2004,4:499-501.
  • 2Ash D. Blake I. Vanstone S. Low comolexitv normal bases[ J ]. Discrete Applied Math, 1989, 25: 191- 210.
  • 3Mullin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases in GF( p^n) [J]. Discrete Applied Math., 1988/1989, 22. 149-161.
  • 4Lidl R, Niederreiter H. Finite Fields[ M]. Cambridge University Press, 1987.
  • 5Blake I, Gao Xuhong, Mullin R, et al. Applications of Finite Fields[M]. Kluwer Academic Publishers, 1993.
  • 6Agnew G, Mullin R,Onyszchuk I,et al. An implementation for a fast public key cryptosystem[J]. J of Cryptology,1991, 3:63 - 79.
  • 7Rosati T. A high speed data encryption processor for public key cryptography, Proc[C]. of IEEE Custom Integrated Circuits Conference, San Diego, 1989. 12.3.1 - 12.3.5.
  • 8Mullin R, Onyszchuk I, VanstoneS, etal. Optimal nornal bases inGF(pn)[J]. Discrete Applied Math, 1988-1989, 22:149 - 161.?A
  • 9Blake I, Gao X H, Mullin R, et al. Applications of finite fields[M]. New York:Kluwer Academic Publishers, 1993.
  • 10Lidl R, Niederreiter H. Finite fields[M]. Cambridge:Cambridge University Press, 1987.

共引文献10

同被引文献34

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部