期刊文献+

基于颜色自相关图的区域定位图像检索 被引量:4

Image retrieval of region location based on color auto-correlogram
原文传递
导出
摘要 颜色自相关图表示了颜色的空间相关性,在图像检索方法中既有效且计算量小,但是该特征在检索前景较为清晰或背景具有较大面积单色的图像时误检率较高.针对此问题,本文提出了一种基于颜色自相关图的区域定位图像检索算法.该算法使用HSV颜色空间自相关图作为图像的底层特征,通过有效区域定位和二值位图来获得局部特征.最后,综合两种特征进行相似度量.实验结果证明,本文方法具有较高的检索精度,克服了颜色自相关图的片面性,显示了组合特征的有效性. Color Auto-Correlogram distills the spatial correlation of colors, and is both effective and inexpensive for content-based image retrieval. But, this feature has a high rate of false detection when images have a clear outlook or a large area monochrome. For this problem, a new region location based Image Retrieval algorithm based on color co-occurrence histogram was proposed. The algorithm uses HSV color auto-correlogram as basic characteristics, using effective region location and Binary bitmap to obtain the local features. Finally, the features were integrated and retrieved by the best similar matching function. Experiments indicate that the method results from the combination of basic and local features is superior than using single feature.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期1259-1264,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2008AA01Z119)
关键词 基于内容的图像检索 颜色自相关图 区域定位 HSV颜色空间 content-based image retrieval, color auto-correlogram, region location, HSV color space
  • 相关文献

参考文献7

二级参考文献24

  • 1Xiong W,Computer Vision Image Understand,1998年,71卷,2期,166页
  • 2Chang C W,J Visual Communication Image Representation,1997年,8卷,2期,107页
  • 3Nngasaka A,Tanaka Y.Automatic Video Indexing and Full_Motion Search for Object Appearance[C].In:Second Working Conf on visual Database System, 1991-09:113-127.
  • 4徐兴 杨祥.视频检索系统中的视频片断自动检测方法[C]..第十届全国多媒体技术学术会议论文集[C].北京,2001-10.99-106.
  • 5Zhang H J,Smoliar S W.Developing Power Tools for Video Indexing and Retfieval[C].In:SPIE Conf on Storage and Retrieval for Image and Video Databases,San Jose , CA ,1994 :140-149.
  • 6Zabin R,Miller J ,Mai K.A Feature-based Algorithm for Detecting and Classifying Scene Breaks[C].In:ACM Multimedia 95,1995-11: 189-200.
  • 7Zhong Yu,Karu K,Jain A K.Locating text in complex color images [J].IEEE Document Analysis and Recognition, 1995 ; 1 : 146-149.
  • 8Gargi U,Kasturi R,Strayer S H.Performance Characterization of Video-Shot-Change Detection Methods[J].IEEE Transaction on Circuits and Systems for video Technology,2000; 10 ( 1 ).
  • 9Zabin R,Miller J ,Mai K.A Feature-based Algorithm for Detecting and Classification Production Effects[J].Multimedia Systems, 1999;7: 119-128.
  • 10Lupatini G,Saraceno C,Leonardi R.Scene Break Deteciton:A Comparison of Research Issues in Data Engineering[C].In:Workshop on Continuous Media Databases and Applications, 1998:34-41.

共引文献44

同被引文献34

  • 1CTASKIRNA, CBOUNTNA, DEIP E J. The vibe video database system:an update and further studies [ C ]//Proc of SPIE/IS&T Confe rence on Storage and Retrieval for Media Database. 2000:199-207.
  • 2SYEDA-MAHMOOD T, SRINIVASAN S, AMIR A, et al. CueVideo : a system for cross-modal search and browse of video databases [ C ]// Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2000:786-787.
  • 3SMITH J R, CHANG S F. VisualSEEk: a fully automated contentbased image query system [ C ]//Prnc of the 4th ACM International Conference on Multimedia. New York : ACM Press, 1997 : 87- 98.
  • 4WACTLAR H D, KANADE T, SMITH M A, et al. Intelligent access to digital video: informedia project [ J]. Computer, 1996,29(5) :46-52.
  • 5PLUIM J P, MAINTZ J B, VIERGEVER M A. Mutual information based registration of medical images: a survey [ J]. IEEE Trans on Medical Imaging ,2003,22 ( 8 ) :986-1004.
  • 6赵开勇.GPU的革命[EB/OL].(2009-08-29).http://blog.csdn.net/Open-Hem/article/details/2853409.
  • 7Haley G M,Manjunath B S. Rotation-invariant tex-ture classification using a complete space-frequencymodel [J]. IEEE Trans on Image Processing,1999,8(2): 255-269.
  • 8Manthalkar R, Biswas P K, Chatterji B N. Rotationand scale invariant texture features using discretewavelet packet transform [J]. Pattern RecognitionLetter, 2003, 24(14) : 2455-2462.
  • 9Rahman S,Neim S M, Farooq A A,et al. Combina-tion of Gabor and Curvelet texture features for facerecognition using principal component analysis [J].International Journal of Computer and Electrical Engi-neering, 2012, 4(3): 264-269.
  • 10Sherin M Y. ICTECT-CBIR : Integrating Curvelettransform with enhanced dominant colors extractionand texture analysis for efficient content-based imageretrieval [J]. Computers and Electrical Engineering,2012,38(5) : 1358-1376.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部