期刊文献+

从端元选择到光谱解混的距离测算方法 被引量:6

DISTANCE MEASUREMENT BASED METHODS FROM ENDMEMBER SELECTION TO SPECTRAL UNMIXING
下载PDF
导出
摘要 提出了基于支持向量机(SVM)的单纯形增长算法(SGA)新实现方法,该方法无需降维预处理,且采用低复杂度的距离尺度代替复杂的体积尺度;证明了线性SVM与传统线性光谱混合模型(LSMM)在光谱解混中的等效性,并探索了前者在信息的扩展利用和模型的非线性推广两方面的优势.实验结果表明,基于SVM的SGA实现方法在保证选择结果不变的前提下复杂度大大降低,SVM模型下解混精度明显提高. A new implementation method of simplex growing algorithm(SGA) is proposed based on support vector machine(SVM),which is free of dimensional reduction and makes use of distance measure instead of volume one.The unmixing equality of linear SVM and linear spectral mixing modeling(LSMM) is proved.The superiorities of linear SVM based spectral unmixing in two extended applications,combined use of endmember informations and nonlinearity use of the model,are explored.Experiments show that the computational complexity of the SVM based implementation method of SGA is decreased greatly,while the unmixing accuracy is obviously improved.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第6期471-475,共5页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60802059 61077079) 教育部博士点新教师基金(200802171003)
关键词 高光谱图像 端元选择 支持向量机 单纯形增长算法 光谱解混 hyperspectral imagery endmember selection support vector machine simplex growing algorithm spectral unmixing
  • 相关文献

参考文献8

  • 1Adams J B,Smith M O,Johnson P E.Spectral mixture modeling:a new analysis of rock and soil types at the Viking Lander I site[J].J.Geophys.Res.1985,91(B8):8098-8112.
  • 2Winter M E.N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C].In Proc.SPIE Conf.Imaging Spectrometry V,1999,vol.3753:266-275.
  • 3Chang C I,Wu C C,Liu W M,et al.A new growing method for simplex-based endmember extraction algorithm[J].IEEE Trans.Geosci.Remote Sens.2006,44(10):2804-2819.
  • 4Winter E M,Winter M E.Autonomous hyperspectral end-member determination methods[C].In Proc.SPIE EUROPTO Conf.,1999,vol.3870.
  • 5Plaza A,Mart nez P,Pérez R,et al.Spatial/spectral endmember extraction by multidimensional morphological operations[J].IEEE Transactions on Geoscience and Remote Sensing.2002,40(9):2025-2040.
  • 6Keshava N,Mustard J F.Spectral unmixing[J].Signal Processing Magazine,IEEE,2002,19(1):44-57.
  • 7Suykens J A K,Brabanter J D,Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing.2002,48(1-4):85-105.
  • 8Vapnik V N.The nature of statistical learning theory[M].New York,Springer Press,1995.

同被引文献115

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部