期刊文献+

一种基于相位编码的量子遗传算法 被引量:2

A Quantum Genetic Algorithm Based on Phase Encoding
下载PDF
导出
摘要 基于量子位测量的二进制量子遗传算法在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率.针对这一问题,本文提出了一种基于量子位相位编码的量子遗传算法.该方法直接采用量子位的相位对染色体进行编码,采用量子旋转门实现染色体上相位的更新,采用Pauli-Z门实现染色体的变异.在该方法中,由于优化过程统一在空间[0,2π]~n进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性.以函数极值优化为例,仿真结果表明该方法的搜索能力和优化效率明显优于普通量子遗传算法和标准遗传算法. Due to the frequent decoding operations,the efficiency of optimization is severely reduced when the binary quantum genetic algorithm based on qubits measure is applied to the continuous space optimization.To solve this problem,a quantum genetic algorithm based on phase encoding is proposed.In this method,the chromosomes are encoded by the phase of qubits,evolved by quantum rotation gates,and mutated by quantum Pauli-Z gates.The optimization process is performed in[0,2π]~n,which has nothing to do with specific issues,therefore,the proposed method has good adaptability for a variety of optimization problems.In application of function extremum optimization,the simulation results show that the approach is superior to either common quantum genetic algorithm or simple genetic algorithm in both search capability and optimization efficiency.
出处 《信息与控制》 CSCD 北大核心 2010年第6期681-685,共5页 Information and Control
基金 国家自然科学基金资助项目(60773065) 中国博士后科学基金资助项目(20090460864) 黑龙江省博士后科学基金资助项目(LBHZ09289) 黑龙江省教育厅科学技术研究项目(11551015)
关键词 量子遗传算法 相位编码 优化算法 quantum genetic algorithm phase encoding optimization algorithm
  • 相关文献

参考文献7

  • 1Shor P W.Algorithms for quantum computation:Discrete logarithms and factoring[C] //Annual Symposium on Foundations of Computer Science.Piscataway,NJ,USA:IEEE,1994:124-134.
  • 2Grover L K.A fast quantum mechanical algorithm for database search[C] //Annual ACM Symposium on Theory of Computing.New York,NY,USA:ACM Press,1996:212-219.
  • 3Narayanan A,Moore M.Quantum inspired genetic algorithm[C] //IEEE International Conference on Evolutionary Computation.Piscataway,NJ,USA:IEEE,1996:61-66.
  • 4Han K H,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation,2002,16(6):580-593.
  • 5Han K H,Kim J H.Genetic quantum algorithm and its application to combinatorial optimization problem[C] //The 2000 Congress on Evolutionary Computation.Piscataway,N J,USA:IEEE,2000:1354-1360.
  • 6张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479. 被引量:122
  • 7Yang J A,Li B,Zhuang Z Q.Multi-universe parallel quantum genetic algorithm and its application to blind-source separation[C] //IEEE International Conference on Neural Networks & Signal Processing.Piscataway,N J,USA:IEEE,2003:393-398.

二级参考文献1

共引文献121

同被引文献24

  • 1Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
  • 2Defoin P M, Stefan S, Nikola K. Quantum-inspired evolutionary algorithm: A multimodel EDA[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(6): 1218-1231.
  • 3Han K H, Kim J H. On the analysis of the quantum-inspired evolutionary algorithm with a single individual[C]// IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2006: 2622-2629.
  • 4Chakraborti N, Mishra P, Erko S. A study of the Cu clusters using gray-coded genetic algorithms and differential evolution[J]. Journal of Phase Equilibria and Diffusion, 2004, 25(1): 16-21.
  • 5Wang L, Li L. An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems[J]. Expert Systems with Applications, 2010, 37(2): 1279-1285.
  • 6Zhang G. Quantum-inspired evolutionary algorithms: A survey and empirical study[J]. Journal of Heuristics, 2011, 17(3): 303- 351.
  • 7KARABOGA D. An Idea Based on Honey Bee Swarm for Numerical Optimization [ R./OL]. Kayseri: Erciyes University,Engineering Faculty, Computer Engineering Department [ 2014-06-08 ]. http ://www. docin, corn/p-773016019, html.
  • 8OMKAR S N, SENTHILNATH J, RAHUL KHANDELWAL, et al. Artificial Bee Colony for Multi-Objective Design Optimization of Composite Structures [ J]. Applied Soft Computing, 2010( 11 ) : 489-499.
  • 9HSIN-CHIH WANG, WANG Yucheng, MEN-SHEN TSAI. Performance Comparisons of Genetic Algorithm and Artificial Bee Colony Algorithm Applications for Localization in Wireless Sensor Networks [ C ] //System Science and Engineering 2010 International Conference. Wuhan, China: [ s. n. ], 2010: 469-474.
  • 10YE Zhiwei, ZENG Mengdi. Image Enhancement Based on Artificial Bee Colony Algorithm and Fuzzy Set [ C]//International Symposium on Information Engineering and Electronic Commerce (IEEC). Wuhan, China: [ s. n. ], 2011 : 127-130.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部