摘要
这里研究了两种二阶级联构造的密码学性质,发现对初始函数增加2个变元,构造方法I和Ⅱ都能使代数免疫阶增加1阶,同时分别获得高的非线性度和1阶弹性。通过选择置换s,构造I能迭代产生非线性度高的代数免疫最优的布尔函数。最后利用级联构造I和II给出了一种具有1阶弹性的代数免疫最优布尔函数的构造方法.
The two second-order concatenating constructions are cryptographically studied.Adding 2 variables to the initial function,the first construction could raise the nonlinearity of the newly-built function effectively,and the second construction could creat 1 order of resiliency,meanwhile the algebraic immunity increases 1.By proper choice of permutation s,the first construction could iteratively construct Boolean functions with high non-linearity and optimal algebraic immunity.Finally a method for constructing 1-resilient Boolean functions with optimal algebraic immunity is provided.
出处
《信息安全与通信保密》
2010年第12期112-115,共4页
Information Security and Communications Privacy
基金
现代通信国家重点实验室基金资助项目(编号:9140C1102020802)
关键词
代数免疫
二阶级联
非线性度
弹性
布尔函数
algebraic immunity
second-order concatenating
non-linearity
resiliency
Boolean function