期刊文献+

Banach空间中渐近非扩张型半群的遍历定理

Ergodic Theorem for the Semi-group of Asymptotically Nonexpansive Type Mappings in Banach Spaces
下载PDF
导出
摘要 对带Opial条件的Banach空间中非扩张半群的不动点理论进行推广,得到了带Opial条件的Banach空间中渐近非扩张型半群的遍历收敛定理. This paper proves ergodic theorem for the semi-group of asymptotically nonexpansive type mappings in Banach spaces with the Opial property.Suppose E is a Banach space with the Opial property,C is a weak compact and convex subset of E and T={T(t):t≥0} is an asymptotically nonexpansive type semi-group of C.If M(τβ,z)→^wz for z∈C,then T(t)z→w^z.
作者 林毅 潘红燕
出处 《大学数学》 2010年第6期61-63,共3页 College Mathematics
关键词 带Opial条件的Banach空间 渐近非扩张型半群 子网 弱紧凸子集 Banach space with the Opial property asymptotically non-expansive type semi-group subnet weak compact and convex subset
  • 相关文献

参考文献5

  • 1Baillon J B.Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert[J].CR Acad Sci Paris,1975,280:1511-1514.
  • 2Suzuki.Some remarks on the set of common fixed points of one-parameter semigroups of nonexpansive mappings in Banach spaces with the Opial property[J].Nonlinear Anal,2004,58(3/4):441-458.
  • 3Li G,Kim J K.Nonlinear ergodic theorem for general curves defined on general semigroups[J].Nonlinear Anal,2003,55(1/2):1-14.
  • 4Seyit T,Ozlem G.Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space[J].J Math.Anal.Appl,2007,329(2):759-765.
  • 5凡震彬,嵇绍春,李刚.Banach空间中渐近非扩张型半群殆轨道的遍历定理[J].扬州大学学报(自然科学版),2007,10(3):19-21. 被引量:4

二级参考文献9

  • 1陈玉会,李刚.τ-拓扑下的不动点定理[J].扬州大学学报(自然科学版),2006,9(1):15-17. 被引量:2
  • 2BAILLON J B. Un theoreme de type ergodique les contraction non lineaires dans un espace de Hilbert [J]. C R Acad Sci Ser A-B, 1975, 280.. 1511-1514.
  • 3ISAO M, KOHAYASI K. On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach space [J]. Nonlinear Anal, 1982, 6(3): 349-369.
  • 4SEYIT T, OZLEM G. Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space [J]. J Math Anal Appl, 2007, 329(2): 759-765.
  • 5TAN K K, XU Hong-kun. Asymptotic behavior of almost-orbits in Hilbert space [J]. Proc Amer Math Soc, 1993, 2(3): 385-393.
  • 6LI Gang, MA Ji-pu. Ergodic theory of commutative semigroups of non-Lipschitzian semigroups in Banach space [J]. Acta Math Sin: Chin, 1997, 40(2): 191-201.
  • 7LI Gang, KIM J K. Nonlinear ergodic theorems for general curves defined on general semigroups [J]. Nonlinear Anal, 2003, 29(2): 231-246.
  • 8DAY M M. Amenable semigroups [J]. Illinois J Math, 1957, 1(4): 547-551.
  • 9BRUCK R E. On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set [J]. Isreal J Math, 1978, 29(1): 1-17.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部