期刊文献+

一种保正的有理插值曲面

Positivity-Preserving Interpolation by C^1 Rational Spline
下载PDF
导出
摘要 本文提出了一种矩形域上正数据点的保正有理样条插值方法.当形状参数满足一些简单条件时,它是C1的.推导出了有理样条保正的关于系数需要满足的充分条件,并在最后给出了数值验证. A positivity-preserving interpolation local scheme to positive scattered data is developed.The rational surface for the data is arranged over a rectangular grid.The function is C1 when the parameters satisfy a simple condition.Sufficient conditions are derived on coefficients in the rational spline to ensure that the surfaces are always positive.In the end of this paper a numerical example is illustrated.
出处 《吉林师范大学学报(自然科学版)》 2010年第4期1-4,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 辽宁省教育厅科学技术项目(No.L2010221)
关键词 C1有理样条 二元插值 保正 C1-rational splines bivariate interpolation positivity-preserving
  • 相关文献

参考文献4

  • 1Q.Duan,S.L.Li,F.X.Bao,E.H.Twizell.Hermite interpolation by piecewise rational surface,Appl.Math.and Comput[J].2008,198(2008):59-72.
  • 2M.Sarfraz.Interpolatory rational cubic spline with biased,point and interwal tention,Comput.Graphics,1992,16(4):427-430.
  • 3Z.X.Luo,X.X.Peng.A C1-rational cubic spline in range restricted interpolation of scattered data[J].Comput.and Appl.Math.,1996,13(1996):209-223.
  • 4E.S.Chan,V.P.Kong,B.H.Ong.Constrained C1 interpolation on rectangular grids.CGIV 2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部