摘要
根据城市空气质量随时间变化的特性,利用资源分配神经网络和隐层节点相关性剪枝方法,建立了一个结构简单、具有在线学习能力的空气质量预测模型。通过对网络模型的训练和测试,表明该模型不仅可降低网络结构的复杂度,而且可以得到比普通资源分配网络更精度的预测结果。
According to the time-varying characteristics of the urban air quality, an air quality predicting model using the resource allocation neural network and the hidden layer nodes correlation pruning algorithm was established. The model had simple structure and the online learning capability. Training and testing results showed that the model could not only reduce the complexity of the network structure, but obtain more accurate forecasting than the usual resource allocation neural network.
出处
《山东大学学报(工学版)》
CAS
北大核心
2010年第6期1-7,87,共8页
Journal of Shandong University(Engineering Science)
基金
国家高技术研究发展计划资助项目(2009AA01Z304)
山东省科技攻关项目经费资助项目(2009GG20001025)
关键词
资源分配网络
相关性
节点合并
空气质量
预测
resource allocation network
correlation
node synthesis
air quality
predicting