期刊文献+

概率空域拥挤管理模型与方法 被引量:2

Probabilistic airspace congestion management model and methodology
原文传递
导出
摘要 针对空域拥挤现象日益严重、管理策略与方法缺乏等问题,建立了空域拥挤预测模型和空域拥挤风险解决模型。采用预测模型预测未来可能产生拥挤的空域和时段,基于空域拥挤风险解决模型对具有高风险拥挤空域在预测时段内实施流量管理,在充分考虑延误成本、不同空域用户延误公平性及其对交通流影响程度等因素的情况下,有效降低拥挤风险。实际运行数据表明,所建立的空域拥挤预测模型和空域拥挤风险解决模型能有效地预测未来空域发生拥挤的时段,迅速找到适宜的拥挤解决策略,平衡运行风险控制与成本控制,为空中交通流量动态管理提供了新途径。 There are still no effective airspace congestion management strategies and methodologies to slove seriously increased airspace congestion. An airspace congestion prediction model and an airspace congestion resolution model were established. The airspace congestion prediction model was used to forecast the time intervals in which the congestion occurred, and the airspace congestion resolution model was used to control the air traffic flow in the airspace with high risk congestion during predicted time intervals. The airspace congestion risk was reduced, and also some factors such as delay cost, delay equity of different airspace users and the influence to the air traffic flow were considered. Based on real flight data, simulation results showed that the two models could effectively predict the time of airspace congestion in the future, rapidly find out suitable strategies, and balance performance risk control and cost control, which provided an innovative new way for dynamic air traffic flow management.
作者 田文 胡明华
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第6期41-47,共7页 Journal of Shandong University(Engineering Science)
基金 国家高技术研究发展计划(863计划)资助项目(2006AA12A105)
关键词 空中交通 空中交通流量管理 风险预测 空域拥挤管理 air traffic air traffic flow management risk prediction airspace congestion management
  • 相关文献

参考文献10

  • 1DELAHAYE D, SOFIANE O, PUECHMOREL S. Airspace congestion smoothing by multi-objective genetic algorithm[ C ]//ACM Symposium on Applied Computing, Santa Fe, New Mexico, USA: the ACM Press, 2005 : 907-912.
  • 2BERTSIMAS D, GUGLIELMO L, ODONI A. The air traffic flow management problem: an integer optimization approach [J]. Integer Programming and Combinatorial Optimization, 2008 ( 5035 ) : 34-46.
  • 3MEYN L A. Probabilistic methods for air traffic demand forecasting [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, USA: AIAA, 2002:44-46.
  • 4DAVIDSON G, KROZEL J, GREEN S M, et al. Strategic traffic flow management concept of operations [ C ]// AIAA Aircraft Tech, Integration and Operation Conference, Chicago, Illinois, USA: AIAA, 2004:101-108.
  • 5ELEFANTE S. A statistical and probabilistic approach for improving efficiency in air traffic flow management [ D ]. Scotland, UK: University of Glasgow, 2001.
  • 6HOFFMAN R, KROZEL J, DAVIDSON G, et al. Probabilistic scenario-based event planning for traffic flow management [ C ]//AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, USA: AIAA, 2007:58-61.
  • 7DEARMON J, WANKE C, GREENBAUM D. Probabilistic TFM preliminary benefits analysis of an incremental solution approach [ M ]. McLean, USA: MITRE/CAASD, 2008 : 198-201.
  • 8SOOD N, MULGUND S, WANKE C, et al. A multi- objective genetic algorithm for solving airspace congestion problems [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton Head, South Carolina, USA: AIAA, 2007:87-94.
  • 9LIU P B, HANSEN M, MUKHERJEE A. Scenario-based air traffic flow management-from theory to practice [ J ]. Transportation Research, 2008 (42) : 685-702.
  • 10TIAN W, HU M. Study of air traffic flow management optimization model and algorithm based on multi-objective programming [ C ]//ICCMS 2010-2010 International Conference on Computer Modeling and Simulation, Sanya, China: ICCMS, 2010:210-214.

同被引文献23

  • 1Delahaye D,Odoni A. Airspace congestion smoothing by stochastic optimization [C]// Proceedings of the sixth International Conference on Evolutionary Pro- gramming. USA : IEEE, 1997 : 163-176.
  • 2Delahaye D,Sofiane O, Puechmorel S. Airspace con- gestion smoothing by multi-objective genetic algo- rithm[C]//Proceedings of ACM Symposium on Ap- plied Computing. Santafe :ACM, 2005 : 907-912.
  • 3Bertsimas D,Guglielmo L,Odoni A. The air traffic flow management problem: an integer optimization approach [C] // Proceedings of 13th International Conference. Bertinoro : IPCO, 2008 : 34-46.
  • 4Davidson G, Krozel J, Green S M, et al. Strategic traffic flow management concept of operations[C]// Proceedings of the AIAA Aircraft Tech, Integration and Operation Conference. Chicago : AIAA, 2004 : 1-10.
  • 5Elefante S. A statistical and probabilistic approach for improving efficiency in air traffic flow manage- ment[D]. Scotland: Department of Aerospace Engi- neering, University of Glasgow, 2001.
  • 6Hoffman R, Krozel J,Davidson G, et al. Probabilistic scenario-based event planning for traffic flow man- agement [C]// Proceedings of the AIAA Navigation and Control Conference and Exhibit. Hilton Head :A- IAA, 2007 : 1-13.
  • 7Liu P B,Hansen M,Mukherjee A. Scenario-based air traffic flow management-from theory to practice[J].Transportation Research, 2008,Part B(42): 685-702.
  • 8DeArmon J, Wanke C, Greenbaum D. Probabilistic TFM:Preliminary benefits analysis of an incremental solution approach [EB/OL]. 2010-09-20. http: // www. mitre, org/work/tech.papers/tech.papers_08/ 07_0168/07.0168. pdf.
  • 9MULGUND S, WANKE C, GREENBAUM D, et al.A genetic algorithm approach to probabilistic airspace congestion management[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Keystone: [s.n.], 2006: 21-24.
  • 10WANKE C, SONG L, ZOBELL S, et al.Probabilistic congestion management[C]//Proc.6th USA/Europe Air Traffic Manage R & D Seminar.Baltimore: [s.n.], 2005: 1-17.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部