期刊文献+

一种求所有最长增量子序列的算法

An algorithm for computing the all longest increasing subsequence
原文传递
导出
摘要 对计算最长增量子序列(longest increasing subsequence,LIS)的CM(Cover-Making)算法进行详细地分析,提出一个基于CM算法的新算法,可以求出一个序列的所有最长增量子序列。它的时间复杂度是O((m+1)k+(n-k)logk),空间复杂度是O(n+km)。 The Cover-Making(CM) algorithm of the longest increasing subsequence was analyzed, and a new algorithm that can compute a sequence' s all longest increasing subsequences was presented, based on the CM algorithm. The complexity of the time is O( (m + 1 )k + (n- k)log k) and the complexity of the space is O( n + km).
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第6期156-158,共3页 Journal of Shandong University(Engineering Science)
关键词 子序列 CM算法 最长增量子序列 所有最长增量子序列 subsequence CM algorithm longest increasing subsequence all longest increasing subsequence
  • 相关文献

参考文献7

  • 1王晓东,吴英杰.最长模式子序列问题的算法分析[J].小型微型计算机系统,2008,29(1):135-138. 被引量:1
  • 2归泳昆.3字符最长公共弱递增子串的O(nloglogn)算法[J].计算机科学,2008,35(3):264-266. 被引量:1
  • 3FREDMAN M L. On computing the length of longest increasing subsequence [ J ]. Discrete Mathematics, 1975, 11(1) :29-35.
  • 4DEOROWICZ Sebastian. An algorithm for solving the longest Increasing circular subsequence problem [ J ]. Information Processing Letters, 2009 (109) :630-634.
  • 5ALBERT M H, GOLYNSKI A, HAMEL A M, et al Longest increasing subsequences in sliding windows [ J ] Theoret Comput Sci, 2004(321 ) :405-414.
  • 6GUSFIELD D. Algorithms on strings, trees, and sequences [ M ]. Cambridge, USA: Cambridge University Press, 1999.
  • 7郑丽英.数据结构Trie及其应用[J].现代计算机,2004,10(8):20-22. 被引量:6

二级参考文献19

  • 1M.A.Weiss. Data structure and Algorithm Analysis in C.Addison-Wesley,New York ,1997.
  • 2H.Jonathan Chao. Next Generation Routers. Proceedings of the IEEE,2002 (9).
  • 3S.Heinz, and J. Zobel, and H.E. Williams, Burst Tries: a Fast,Efficient Data Structure for Strings keys.In Submission,2001.
  • 4DE克努特.计算机程序设计技巧[M].北京:国防工业出版社,1982..
  • 5Apostolico A, Guerra C. The longest common subsequence problem revisited [J]. Algorithmica, 1987,2 (2) : 315-336.
  • 6Fredman M L. On computing the length of longest increasing subsequences[J]. Discrete Mathematics, 1975,11 (1) :29-35.
  • 7Daniel S Hirschberg. Algorithms for the longest common subsequence problem [J]. Journal of the ACM, 1997, 24 (4) : 644- 675.
  • 8Stanley R. Longest alternating subsequences of permutations [EB/OL]. Preprint,2005; math. CO/0511419. http://www- math. mit. edu/-rstan/pubs/
  • 9Stanley R. Increasing and decreasing subsequences and their variants [C/OL]. In: Proceedings of International Congress of Mathematicians 2006 (ICM2006). http://www-math, mlt. edu/-rstan/pubs/
  • 10Stanley R. Alternating permutatlons and symmetric functions, J. Combinatorial Theory (A) [EB/OL]. http ://www- math. mit.edu/-rstan/pubs/, 2006.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部