期刊文献+

EMD-Tnorm得分规整策略在说话人确认中的应用 被引量:1

A new score normalizaion algorithm based on EMD-Tnorm for speaker verification
下载PDF
导出
摘要 从两个方面对确认系统进行了改进,在模型方面,扩展了MixMax模型,对复杂的背景噪声等干扰因素在训练说话人模型的同时也进行了建模,最大程度上消除噪声的影响,对说话人的特征分布进行了更真实的表征;在得分方面,提出了一种改进的得分规整策略,基于EMD距离从所有背景说话人集合中自适应选择最接近的一定数量的模型构成说话人特定的背景集合,从而进行得分归一化。实验结果表明,该方法能够同时针对说话人和测试环境的不同进行补偿,进一步降低了误识率和漏警率,获得了很好的确认性能。 In this paper,the verification system from two aspects was improved.On one hand,we extended MixMax model that the EMD(earth mover's distance) can be applied,which can remove the disturbance of noise;on the other hand,we improved the Tnorm score normalization method based on the EMD.Experimental results show that this method can compensate the speaker-dependent and test-dependent variability,also show a stable performance improvement by decreasing the FA and FR.
出处 《中国工程科学》 2010年第2期95-100,共6页 Strategic Study of CAE
基金 浙江省自然科学基金资助项目(Y1090649) 浙江省教育厅科研资助项目(Y200805349)
关键词 说话人确认 鲁棒性 EMD距离 MixMax模型 speaker verification robustness earth mover's distance MixMax model
  • 相关文献

参考文献9

  • 1Dijona P D,Asmaa E H,Gerard Chollet.Text-independent speaker verification state of the art and challenges[J].LNCS,2007,135-169.
  • 2Sturim D E,Reynolds D A.Speaker adaptive cohort selective for Tnorm in text-independent speaker verification[J].ICASSP,2005,1:741 -744.
  • 3Daniel R C,Julian F A,Joaquin G R.Speaker verification using speaker-and test-dependent fast score normalization[J].Pattern Recognition Letters,2007,28:90-98.
  • 4Auckenthaler R,Carey M,Lloyd-Tomas H.Score normalization for text-independent speaker verification systems[J].Digital Signal Process,2000,10:42 -54.
  • 5Reynolds D A,Quatieri T F.Speaker verification using adapted Gaussian Mixture Models[J].Digital Signal Process,2000,10:19 -41.
  • 6Thilo Stadelmann,Bernd Freisleben.Fast and robust speaker clustering using the earth mover' s distance and mixmax madeh[J].ICASSP,2006,1:989-992.
  • 7Rubner Y,Tomasi C,Guibas L J.The earth mover' s distance as a metric for image retrieval[J].International Journal of Computer Vision,2000,40:99-121.
  • 8郑榕,张树武,徐波.基于特征规整和评分规整的说话人确认研究[J].中文信息学报,2006,20(6):75-82. 被引量:3
  • 9刘明辉,陈继旭,戴蓓蒨,李辉.基于TZ Normalization规整的话者确认阈值选取[J].数据采集与处理,2005,20(3):311-317. 被引量:3

二级参考文献21

  • 1Reynolds D A. Comparison of background normalization methods for text-independent speaker verification[A]. Proc Eurospeech 1997[C]. Rhodes, 1997.963~966.
  • 2The official website for the NIST speaker recognition evaluations[EB/OL]. http://www.nist.gov/speech/tests/spk.
  • 3Reynolds D A. Speaker verification using adapted Gaussian mixture models[J]. Digital Signal Processing,2000,10:19~41.
  • 4Roland A. Score normalization for text-independent speaker verification systems[J]. Digital Signal Processing, 2000,10:42~54.
  • 5Martin A, Przybocki M. The NIST 1999 speaker recognition evaluation-an overview[J]. Digital Signal Processing, 2000,10:1~18.
  • 6Rosenberg A, Delong J, Lee C, et al. The use of cohort normalized scores for speaker recognition[A]. Proc ICSLP 1992[C]. Banff, 1992.599~602.
  • 7Campbell,J.P.Speaker recognition:a tutorial[J].Proc.IEEE,1997; Vol.85:1437-1462.
  • 8Hermansky,H.,Morgan,N.RASTA processing of speech[J].IEEE Trans.on Speech and Audio Processing,1994; Vol.2:578-589.
  • 9Viikki,O.,Laurila,K.Cepstral domain segmental feature vector normalization for noise robust speech recognition[J].Speech Communication,1998; Vol.25:133-147.
  • 10Segura,J.C.,Benítez,C.et al.Cepstral domain segmental nonlinear feature transformations for robust speech recognition[J].IEEE Signal Processing Letters,2004; Vol.11:517-520.

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部