期刊文献+

A549细胞和Hep-2细胞表面糖链类型鉴定及其与H5N1型禽流感病毒结合的特性 被引量:1

Binding of avian influenza A (H5N1) to gangliosides on the surface of A549 cells and Hep-2 cells
下载PDF
导出
摘要 目的研究H5N1病毒对A549细胞和Hep-2细胞的黏附和进入特性。方法用凝集素染色技术和流式细胞术检测A549细胞和Hep-2细胞表面SAα2,3Gal和SAα2,6Gal的表达;用间接免疫荧光法检测H5N1病毒进入细胞情况;用Western blot法分析病毒进入A549细胞和Hep-2细胞的效率。结果 A549细胞和Hep-2细胞表面有大量SAα2,3Gal,但SAα2,6Gal含量却很少。Hep-2细胞表面SAα2,3Gal受体的表达水平高于A549细胞。H5N1病毒能够进入A549细胞和Hep-2细胞,而且H5N1病毒对A549细胞的亲嗜性更强。与A549细胞相比,Hep-2细胞对H5N1病毒诱导的细胞死亡更敏感。结论细胞表面唾液酸-α2,3-半乳糖的表达与H5N1病毒的黏附一致。然而,唾液酸受体可能不是介导病毒进入的唯一因素。 Objective To study the attachment and subsequent entry of H5N1 virus into A549 cells and Hep-2 cells.Methods Expression of SAα2,3Gal and SAα2,6Gal on A549 cells and Hep-2 cells was examined by lectin fluorescence and flow cytometry.H5N1 virus in A549 and Hep-2 cells were measured by indirect immunofluorescence assay.The entry efficiency was determined by Western blot analysis.Results SAα2,3Gal was prevalent in A549 cells and Hep-2 cells,while SAα2,6 Gal was little found.Furthermore,SAα2,3Gal expression was more regularly observed in Hep-2 cells rather than A549 cells.The H5N1 virus tested could enter A549 cells and Hep-2 cells.However,viral entry efficiency was different between the two cell lines.A549 cells were found to be more susceptible to avian influenza than Hep-2 cells.H5N1-induced cell death was inefficient in A549 cells than Hep-2 cells.Conclusion The expression of SAα2,3Gal on the cells tested corresponded with the attachment of the H5N1 virus.However,sialic acid only may not be sufficient for entry into cells.
出处 《基础医学与临床》 CSCD 北大核心 2010年第12期1318-1324,共7页 Basic and Clinical Medicine
关键词 H5N1病毒 呼吸道上皮细胞 唾液酸-α2 3-半乳糖 唾液酸-α2 6-半乳糖 细胞死亡 H5N1 virus respiratory epithelial cells SAα2 3 Gal SAα2 6 Gal cell death
  • 相关文献

参考文献9

  • 1Ito T, Couceiro JN, Kelm S. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential [J]. J Virol, 1998, 72:7367 -7373.
  • 2Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3avian influenza virus hemagglutinina after their introduction into mammals [J]. J Viral, 2000, 74:8502 -8512.
  • 3Veljkovic V, Veljkovic N, Muller CP, et al. Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: possible consequences for therapy and infection control [J]. BMC Struct Bio, 2009; 9:21. doi: 10. 1186/1472-6807-9-21.
  • 4Stevens J, Blixt O,Tumpey TM, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus [J]. Science, 2006, 312:404-410.
  • 5Nicholls JM, Chart MC, Chan WY, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract[J]. Nat Med, 2007, 13:147 -149.
  • 6Zhirnov OP, Klenk HD. Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling [ J ]. Apoptosis, 2007,12:1419 - 1432.
  • 7Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A ( H5N1 ) infection in humans [J]. Am J Pathol, 2008, 172:1155 -1170.
  • 8Matrosovich MN, Matrosovich TY, Gray T, et al. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium [ J ]. J Virol, 2004, 78 : 12665 - 12667.
  • 9Mok CK, Lee DC, Cheung CY, et al. Differential onset of apoptosis in influenza A virus H5N1-and H1N1-infected human blood Macrophages [ J]. J C, en Virol, 2007, 88:1275 - 1280.

同被引文献11

  • 1Sun Y,Qin K,Wang Jyet al. High genetic compatibility andincreased pathogenicity of reassortants derived from avianH9N2 and pandemic H1N1/2009 influenza viruses [ J ].Proc Natl Acad Sci USA, 2011, 108:4164-4169.
  • 2Steel J, Lowen AC, Mubareka S, et al. Transmission of in-fluenza virus in a mammalian host is increased by PB2 ami-no acids 627K or 627E/701N[ J]. PLoS Pathog, 2009, 5 :el000252. doi; 10.1371/joumal. ppat. 1000252.
  • 3Mok CK, Yen HL, Yu MY, et al. Amino acid residues 253and 591 of the PB2 protein of avian influenza virus A H9N2contribute to mammalian pathogenesis[ J]. J Virol, 2011,85:9641-9645.
  • 4Xu C, Hu WB, Xu K, et al. Amino acids 473V and 598Pof PB1 from an avian-origin influenza A virus contribute topolymerase activity,especially in mammalian cells [ J ] ? JGen Virol, 2012, 93:531-540.
  • 5Yamayoshi S, Yamada S, Fukuyama S, et al. Virulence-af-fecting amino acid changes in the PA protein of H7N9 influ-enza A vimses[J]. J Virol, 2014, 88:3127-3134.
  • 6Hara K, Schmidt FI, Crow M, et al. Amino acid residuesin the N-terminal region of the PA subunit of influenza A vi-rus RNA polymerase play a critical role in protein stability,endonuclease activity, cap binding, and virion RNA pro-moter binding[J]. J Virol, 2006, 80:7789-7798.
  • 7Sun Y, Tan Y,Wei K, et al. Amino acid 316 of hemag-glutinin and the neuraminidase stalk length influence viru-lence of H9N2 influenza virus in chickens and mice [ J ]. JVirol, 2013, 87:2963-2968.
  • 8Liu D, Shi W, Shi Y,et al. Origin and diversity of novelavian influenza A H7N9 viruses causing human infection :phylogenetic,structural,and coalescent analyses [ J ].Lancet, 2013, 381:1926-1932.
  • 9Liu D, Shi W, Gao GF. Poultry carrying H9N2 act as in-cubators for novel human avian influenza viruses[ J]. Lan-cet, 2014, 383:869.
  • 10辛丽,舒跃龙.潜在的流感大流行病毒:H9N2禽流感病毒[J].中华实验和临床病毒学杂志,2013,27(3):234-235. 被引量:15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部