期刊文献+

TiO_2/SiO_2复合中空微球的选择性改性与药物缓释性能研究 被引量:4

Selective Modification and Application for Controlled Release of TiO_2/SiO_2 Composite Hollow Spheres
下载PDF
导出
摘要 以聚合物微球为模板,通过溶胶-凝胶法制备了TiO2/SiO2复合中空微球,并分别采用硬脂酸和无机磷酸对内层二氧化钛进行了疏水和亲水改性.扫描电镜(SEM)和氮气吸附-脱附结果表明中空微球具有完整的球形空腔和多孔的壳层孔道结构.傅立叶红外光谱(FTIR)证实了内部疏水及亲水改性层的存在.以布洛芬药物为对象,采用热重分析(TGA)和高效液相色谱(HPLC)考察了不同改性对复合中空微球的载药量及缓释性能的影响.研究结果表明,由于存在疏水作用,硬脂酸改性的中空微球载药量(189.8mg/g)高于未改性中空微球(177.5mg/g),且药物释放速率明显减慢,53h内药物释放率仅为55%;与此相反,无机磷酸亲水改性的中空微球载药量减小(为153.0mg/g),且释放速率提高,10h内释放了将近80%的药物.因此,采用不同的改性基团可以对复合中空微球的药物释放速率进行有效地调控. The composite TiO2/SiO2 hollow spheres(CHSs) were successfully prepared via sol-gel process using carboxyl-functionalized polystyrene spheres as templates.Then the titania layer was selectively modified with stearic acid and phosphate,forming hydrophobic and hydrophilic interior,respectively.Their hollow and porous structures were confirmed by scanning electron microscope(SEM) and N2 sorption analysis.Fourier transform infrared(FT-IR) spectra indicate that the interaction between the modifiers and the surface of titania is not physical adsorption but chemical combination.Using ibuprofen(IBU) as a model drug,the investigation of drug loading amounts and release rates shows that they can be regulated by suitable modification.Compare with the unmodified system,the stearic acid modified CHSs exhibit higher drug loading amount and lower release rate due to the hydrophobic effect.The IBU loading amount reaches 189.8mg/g and only about 55% of IBU is released within 53h.However,the phosphate modified CHSs exhibit relatively low drug loading amount(153.0mg/g) and high release rate,probably associated to the hydrophilic shells and charge repulsion.Its release percentage reaches nearly 80% within 10h.Therefore,the produced CHSs have potential application in the sustained drug delivery.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2010年第2期201-205,共5页 Journal of Inorganic Materials
关键词 复合中空微球 药物缓释 表面改性 composite hollow spheres controlled release surface modification
  • 相关文献

参考文献13

  • 1Im S H,Jeong U,Xia Y.Polymer hollow particles with controllable holes in their surfaces.Nature Materials,2005,4(9):671-675.
  • 2Wei W,Ma G H,Hu G,et al.Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier.J.Am.Chem.Soc.,2008,130(47):15808-15810.
  • 3Son S J,Bai X,Lee S B.Inorganic hollow nanoparticles and nanotubes in nanomedicine (Part 1):drug/gene delivery applications.Drug Discovery Today,2007,12(15/16):650-656.
  • 4Pei A H,Shen Z W,Yang G S.Preparation of TiO2 nanocapsules for loading and release of antimicrobial triclosan molecules.Mater.Lett.,2007,61(13):2757-2760.
  • 5Cao S W,Zhu Y J,Ma M Y,et al.Herarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3:preparation and potential application in drug delivery.J.Phys.Chem.C,2008,112(6):1851-1856.
  • 6Zhu Y F,Shi J L,Li Y S,et al.Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface.Microporous Mesoporous Mater.,2005,85(1/2):75-81.
  • 7Zhu Y F,Shi J L.A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug.Microporous Mesoporous Mater.,2007,103(1/2/3):243-249.
  • 8Wu X D,Wang D,Yang S R.Preparation and characterization of stearate-capped titanium dioxide nanoparticles.J.Colloid Interface Sci.,2000,222(1):37-40.
  • 9Song Y Y,Bauer S,Schmuki P,et al.Amphiphillic TiO2 nanotube arrays:an actively controllable drug delivery system.J.Am.Chem.Soc.,2009,131(12):4230-4232.
  • 10Gawalt E S,Avaltroni M J,Koch N,et al.Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium.Langmuir,2001,17(19):5736-5738.

同被引文献35

  • 1ZENGAi-xiang,XIONGWei-hao.Electroless Ni-Co-P Coating of Cenospheres Using Ag(NH_(3))_(2)^(+) Activator[J].材料热处理学报,2004,25(05B):1115-1118. 被引量:3
  • 2姜鑫,杨振国.玻璃微珠表面改性方法及其对硬质聚氨酯泡沫性能的影响[J].复旦学报(自然科学版),2007,46(3):297-301. 被引量:16
  • 3Aguado J, Arsuaga J M, Arencibia A, et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica [ J ]. Hazard. Mater. ,2009,163( 1 ) :213-221.
  • 4Han K, Wu Z J, Lee J, et al. Activity of glucose oxidase entrapped in mesoporous gels [ J ]. Biochem Eng. ,2005,22 (2) :161-166.
  • 5Halamova D, Badanicova M, et al. Naproxen drug delivery using periodic mesoperous silica SBA-15 [ J]. Applied SugCace Science,2010,256 (22) :6489-6494.
  • 6Li X, Zhang L X, Dong X P, et al. Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior[ J]. Microporous Mesoporous Mater. ,2007,102( 1-3 ) :151-158.
  • 7Chen L F, Zhou X L, et al. Comparative studies of Zr-based MCM-41 and MCM-48 mesoporous molecular sieves: synthesis and physicochemical properties [ J ]. Applied Surface Science, 2006,253 ( 5 ) : 2443-2451.
  • 8Qu F Y, Zhu G S, et al. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials[ J ]. Journal of Solid State Chemistry,2006,179 ( 7 ) :2027 -2035.
  • 9Wang Y G, Ren J W, et al. Facile synthesis of ordered magnetic mesoporous gamma-Fe203/SiO2 nanocomposites with diverse mesostructures [ J ]. Journal of Colloid and Interface Science ,2008,326( 1 ) :158-165.
  • 10Yang P P, Quan Z W, et al. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier[J]. Biomaterials, 2009,30 (27) :4786-.4795.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部