期刊文献+

Gluconobacter oxydans NH-10中短链D-阿拉伯糖醇脱氢酶的研究 被引量:2

Short-chain D-arabitol Dehydrogenase from Gluconobacter oxydans NH-10
原文传递
导出
摘要 以氧化葡萄糖酸杆菌(Gluconobacter oxydans)NH-10基因组DNA为模板,扩增得到D-阿拉伯糖醇脱氢酶基因arDH,将其克隆到大肠杆菌表达载体JM109(DE3)中进行诱导表达。SDS-PAGE电泳分析ArDH的分子量约为30kDa,是一个短链脱氢酶,既能催化D-阿拉伯糖醇氧化为D-木酮糖,又能催化D-木酮糖还原为D-阿拉伯糖醇。催化氧化反应时,对D-阿拉伯糖醇的Km为60.67mmol/L,Vmax为0.803U/mg;它能同时依赖于NAD+和NADP+,但是更加偏好辅酶NAD+;最适pH为12.0。还原反应对D-木酮糖的Km为36.39mmol/L,Vmax为1.71U/mg;最优pH为7.0,最适温度均为30℃。 Based on combination of bioinformatics,The similarity between the cloning gene and corresponding gene of Acetobacter suboxydans reach to 80%.Then,recombinant plasmid was constructed by inserting arDH genes into vector pET22b and functionally expressed into E.coli JM109(DE3).The molecular mass of recombinant D-arabitol dehydrogenase was about 30 kDa,so it belonged to the short-chain dehydrogenase.The recombinant enzyme was purified by His Trap and subjected to enzymological characterization.The ArDH could not only oxidize D-arabitol to D-xylulose,but also reduce D-xylulose to D-arabitol.When catalyzing oxidative reaction,the Km value for D-arabitol was 60.67 mmol/L,Vmax was 0.803 U/mg;it could use NAD+ and NADP+ as cozyme,but it preferred to depending on NAD+;the optimum pH and temperature of oxidative reactions was 12.0 and 30℃.However,when catalyzing reductive reactions,the Km value for D-xylulose was 36.93 mmol/L,Vmax was 1.71 U/mg;the optimum pH and temperature of reductive reactions was 7.0 and 30℃.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2010年第11期39-43,共5页 China Biotechnology
基金 国家"973"计划(2007CB14304) 国家自然科学基金(20906050) 江苏省属高校自然科学重大基础研究(08KJA180001) 江苏省高校自然科学研究项目(09KJB530007) 江苏省博士生自然科学类科研创新计划(CX09B_143Z) 江苏省博士后基金(0901012B)资助项目
关键词 氧化葡萄糖酸杆菌 D-阿拉伯糖醇脱氢酶 克隆 Gluconobacter oxydans D-arabitol dehydrogenase Cloning
  • 相关文献

参考文献10

  • 1Neuberger M S, Patterson R A, Hartley B S. Purication and properties of Klebsiella aerogenes D-Arabitol dehydrogenase. Biochem J, 1979,183 ( 1 ) :31-42.
  • 2Murray J S, Wong M L, Miyada C G, et al. Isolation, charaeterizqtion and expression of the gene that encodes D- arabinitol dehydrogenase in Candida tropicalis. Gene, 1995,155 (1) :123-128.
  • 3Kersters K, Wood W A, Ley J D. Polylol dehydrogenases of Gluconobacter oxydans. J Biol Chem, 1965,240 ( 3 ) : 967-975.
  • 4Quong M W, Miyada C G,Switchenko A C, et al. Identification, purification, and characterization of a D-arabinitol-specific dehydrogenase from Candida tropicalis. Biochem Biophys Res Commun, 1993,196 ( 3 ) : 1323-1329.
  • 5ShunichiS U, Masak~u S, Yasuhiro M, et al. Novel Enzymatic Method for the Production of Xylitol from D-Arabitol by Gluconobacter oxydans. Biosci Biotechno Biochem, 2002, 66 (12) :2614-2620.
  • 6Adachi O, Yoshikazu F, Mohamed F G, et al. Membrane-bound quinoptein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257 : A versatile enzyme for the oxidative fermentation of various ketoses. Biosci Biotechno Biochem,2001,65 (12) :2755- 2762.
  • 7Cheng H R, Li Z L, Jiang N, et al. Cloning, Purification and Characterization of an NAD-Dependent D-Arabitol Dehydrogenase from Acetic Acid Bacterium, Acetobacter suboxydans. Proteins, 2009,28 (6) :263-272.
  • 8Sugiyama M, Suzuki S I,Tonouchi N, et al. Cloning of the xylitol dehydrogenase gene from Glucortobacter oxydans and improved production of xylitol from D-arabitol. Biosci Biotechnol Biochem, 2003,67 ( 3 ) :584-591.
  • 9Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72 ( 1 - 2) :248-254.
  • 10沈晓波,齐向辉,朱宏阳,徐虹.Gluconobacter oxydans木糖醇脱氢酶基因的克隆表达及木糖醇的转化分析[J].中国生物工程杂志,2009,29(12):54-59. 被引量:4

二级参考文献22

  • 1Makinen K K. The rocky road of xylitol to its clinical application. Dent Res,2000,79(6) : 1352 - 1355.
  • 2Juan C P, Herminia D, Jose M D. Biotechnological production of xylitol. Part 2 Operation in culture media made with commercial sugars. Bioresource Technology, 1998,65 ( 3 ) : 203 - 212.
  • 3Granstrom T B,Izumori K,Leisola M. A rare sugar xylitol. Part Ⅰ: the biochemistry and biosynthesis of xylitol. Appl Mierobiol Biotechnol,2007,74 ( 2 ) : 277 - 281.
  • 4Granstrom T B, Izumorl K, Leisola M. A rare sugar xylitol. Part Ⅱ: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol,2007,74(2) : 273 -276.
  • 5Onishi H, Suzuki T. Microbial production of xylitol from glucose. Appl Microbiol, 1969,18 : 1031 - 1035.
  • 6ShunichiS U, Masakazu S, Yasuhiro M, et al. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem, 2002, 66 (12) : 2614 -2620.
  • 7Sugiyama M,Suzuki S I, Tonouchi N, et al. Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol. Biosci Biotechnol Biochem, 2003,67(3) : 584-591.
  • 8Sugiyama M, Suzuki S I, Tonouchi N, et al. Transaldolase/ Glucose-6-phosphate isomerase bifunctional enzyme and ribulokinase as factors to increase xylitol production from Darabitol in Gluconobacter oxydans. Biosci Biotechnol Biochem, 2003,67(12) : 2524 -2532.
  • 9Zhu H Y, Xu H, Dai X Y, et al. Production of D-arabitol by a newly isolated Kodamaea ohmeri. Bioprocess Biosyst Eng,2009 ( in press).
  • 10Harkki Anu Marjukka. Recombinant method and host for manufacture of xylitol. W0,94/10325,1994-11-05.

共引文献3

同被引文献27

  • 1Jornvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR). Biochem, 1995, 34: 6013-6030.
  • 2Kavanagh KL, J6rnvall H, Persson B, et al. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci, 2008, 65(24): 3895-3906.
  • 3Anderson SM, Johnsen K, Sorensen J, et al. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int J Syst Evol Microbiol, 2000, 50(6): 1957-1964.
  • 4Kirschner A, Altenbuchner J, Bornscheuer U T. Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli. Appl Microbiol Biotehnol, 2007, 75(5): 1095-1101.
  • 5Paulsen IT, Press CM, Ravel J, et al. Complete genome sequence of the plant commensal Pseudomonas fluoreseens Pf-5. Nat Biotechnol, 2005, 23(7): 873-878.
  • 6Nuss D, Goettig P, Magler I, et al. Crystal structure of the NADP-dependent mannitol dehydrogenase from Cladosporium herbarum: implications for oligomerisation and catalysis. Biochimie, 2010, 92(8): 985-993.
  • 7Polizzi KM, Moore DA, Bommarius AS. A short-chain dehydrogenase/reductase from Vibrio vulnificus with both blue fluorescence and oxidoreduetase activity. Chem Commun, 2007(18): 1843-1845.
  • 8Pennacchio A, Giordano A, Pucci B, et al. Biochemical characterization of a recombinant short-chain NAD(H)- dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Extremophiles, 2010, 14(2): 193-204.
  • 9Hildebrandt P, Riermeier T, Altenbuchner J, et al. Efficient resolution of prostereogenic arylaliphatic ketones using a recombinant alcohol dehydrogenases from Pseudomonas fluorescens. Tetrahedron: Asymmetry, 2001, 12(8): 1207-1210.
  • 10Hildebrandt P, Musidlowska A, Bornscheuer UT, et al. Cloning, functional expression and biochemical characterization of a stereoselective alcohol dehydrogenase from Pseudomonas fluorescens DSM50106. Appl Microbiol Biotechnol, 2002, 59(4/5): 483-487.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部