期刊文献+

V-5Cr-5Ti合金准静态和高应变率拉伸力学行为

Quasi-static and high strain rate tensile mechanical behavior of V-5Cr-5Ti alloy
下载PDF
导出
摘要 研究了电弧熔炼V-5Cr-5Ti合金在应变率为3.3×10-5~1.2×102/s范围内的拉伸性能,获得了应变率敏感系数。结果表明,在室温下低应变率下V-5Cr-5Ti合金的屈服应力和极限抗拉强度随应变率增加而增大,延脆转变应变率大约在101~102/s之间,从准静态到动态应变率范围应变率敏感系数较大;经光学显微镜、TEM、XRD和EDS分析表明,电弧熔炼V-5Cr-5Ti合金平均晶粒尺寸为200μm左右的等轴晶,且晶粒大小不均匀,应变率对晶粒尺寸没有明显影响;低应变率时,断裂表面为微孔洞聚集和穿晶断裂的混合模式,高应变率时为脆性断裂;V-5Cr-5Ti合金为板条马氏体组织,在晶界处有第二相析出物Ti(O、C、N)存在。 In this work the static and dynamic tensile properties of vanadium V-5Cr-5Ti alloy were investigated at strain rates ranged from 3. 3×10-5 to 1. 2×102/s, coefficient of strain rate sensitivity was obtained. The material microstructures were analyzed using optical microscope, SEM, TEM, XRD and EDS. Results show that the yield strength a increases with strain rate. The brittle-ductile transition strain-rate is about 101 to 102/s, from the quasi-static to dynamic strain rates higher strain rate sensitivity coefficient. At room temperature the tensile fracture at a low strain rate occurs via mixed modes of microvoid aggregating and transgranular cracking;at high strain rate the fracture occurs via a brittle mode. The analysis by TEM, XRD and EDX shows the existence of lath martensite, and on there exits precipitate phase of Ti(O, C, N) in grain boundaries.
出处 《功能材料》 EI CAS CSCD 北大核心 2010年第A03期409-412,共4页 Journal of Functional Materials
基金 中国工程物理研究院科学技术重点基金资助项目(2007A04001)
关键词 V-5Cr-5Ti合金 应变率 组织结构 力学性能 V-5Cr-5Ti alloy strain rate microstructure mechanical property
  • 相关文献

参考文献12

  • 1Loomis B A,Smith D L,Garner F A. [J]. Journal of the Nuclear Materials, 1991,179-181 : 771.
  • 2Saton M,Abe K,Kayano H. [J]. Journal of the Nuclear Materials, 1991,179-181 : 757.
  • 3Smith D L,Chung H M,Loomis B A,et al. [J]. Journal of the Nuclear Materials, 1996,233-237 : 356-363.
  • 4Smith D L,Billone M C,Natesan K. [J]. Journal of Re- fractory Metals & Hard Materials, 2000,18 : 213-224.
  • 5Shen Jiming,Yang Lin,Qiu Shaoyu,et al. [J]. Rare Metal Materials and Engineering,2003,32(2):113-116.
  • 6Chen Jiming. [J]. Nuclear Fusion and Plasma Physics, 2002, 22(4) :209-214.
  • 7Rice P M, Zinkle S J. [J]. Journal of the Nuclear Materi- als, 1998,258-263 : 1414-1419.
  • 8Aglan H A,Gan X Y,Chin B A,et al. [J]. Journal of the Nuclear Materials, 2000,278 : 186-194.
  • 9Rowcliffe A F,Zinkle S J, Hoelzer D T. [J]. Journal of the Nuclear Materials, 2000,283-287 : 508-512.
  • 10Dieter G E. Mechanical Metallurgy[M]. New York: McGraw Hill, 1986. 297.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部