期刊文献+

粒子群算法结合支持向量机回归法用于近红外光谱建模 被引量:10

Application of Particle Swarm Optimization-Least Square Support Vector Machine Regression to Modeling of Near Infrared Spectra
下载PDF
导出
摘要 研究了最小二乘法支持向量机(LSSVM)应用于烟丝样品和小麦样品的近红外光谱建模,采用粒子群优化算法(PSO)优化LSSVM的参数。通过对烟草样品和小麦样品的近红外光谱建模和预测,并与常规的偏最小二乘法(PLS)比较发现,PSO-LSSVM法具有更好的预测效果和稳健性。 In this paper,the application of least square support vector machine(LSSVM) to the modeling of near infrared(NIR) spectra of tobacco and wheat samples was studied.The modeling parameters for LSSVM were optimized by particle swarm optimization(PSO).Thus,a quantitative modeling of infrared spectra based on PSO-LSSVM for tobacco and wheat samples was established and was used to predict the unknown samples.The NIR spectra were divided into calibration set and prediction set.The calibration set was mainly used in the modeling,while the prediction set was used for unknown samples to test the validity of the models.In the modeling of NIR spectra of tobacco samples,the reducing sugar,total sugar,total nitrogen and total plant alkaloid were of target analytes.It was found that the root-mean-square error of cross-valication(RMSECV) obtained by PSO-LSSVM was smaller than that by PLS.In the prediction of NIR spectra of tobacco samples and wheat samples,the root mean square error of prediction(RMSEP) obtained by PSO-LSSVM was also smaller than that by PLS.In conclusion,the PSO-LSSVM gave good precision in modeling and good accuracy in prediction.
出处 《分析测试学报》 CAS CSCD 北大核心 2010年第12期1215-1219,共5页 Journal of Instrumental Analysis
基金 国家自然科学基金资助项目(20875106) 广东省自然科学基金资助项目(9151027501000003) 中国烟草广东工业有限公司资助项目(I05XM-QK[2008]017)
关键词 最小二乘法支持向量机 粒子群优化算法 烟草 小麦 近红外光谱 least square support vector machine(LSSVM) particle swarm optimization(PSO) tobacco wheat near infrared spectroscopy
  • 相关文献

参考文献17

  • 1ABNEY W,FESTING E R.On the influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum[J].Philos Trans Roy Soc London,1881,172:887-918.
  • 2刘国珍,陈祖刚,李丹,刘扬,庞代文.近红外光谱分析技术进展及其在烟草行业中的应用[J].烟草科技,2001,34(11):15-17. 被引量:26
  • 3LI H D,LIANG Y Z,XU Q S.Support vector machines and its applications in chemistry[J].Chemom Intell Lab Syst,2009,95(2):188-198.
  • 4ZHANG Y,CONG Q,XIE Y,YANG J X,ZHAO B.Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine[J].Spectrochim Acta:A,2008,71(4):1408-1413.
  • 5刘瑞兰,牟盛静,苏宏业,褚健.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899. 被引量:31
  • 6SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Process Lett,1999,9(3):293-300.
  • 7MASOUM S,MALABAT C,JALALI-HERAVI M,GUILLOU C,REZZI S,RUTLEDGE D N.Application of support vector machines to 1 H NMR data of fish oils:methodology for the confirmation of wild and farmed salmon and their origins[J].Anal Bioanal Chem,2007,387(4):1499-1510.
  • 8MCCLURE W F.Spectral characteristics of tobacco in the near infrared region from 0.6-2.6 microns[J].Tob Sci,1968,12:232-235.
  • 9MCCLURE W F,NORRIS K H,WEEKS W W.Rapid spectrophotometric analysis of the chemical composition of tobacco.Part 1.total reducing sugars[J].Beitr Tabakforsch,1977,9:13-18.
  • 10SHAWE-TAYLOR J,CRISTIANINI N.Kernel methods for pattern analysis[M].Cambridge University Press,2004.

二级参考文献29

  • 1Cristianini,N.支持向量机导论[M].李国正,王猛译.北京:电子工业出版社,2004:15—60.
  • 2Keerthi S S.Lin C J Asymptotic behaviors of support vector machines with Gaussian kemel [J]. Neural computation,2003,(15):1667-1689.
  • 3Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 4Yonas B D, Slavco V. Model induction with support vector machinesIntroduction and application[J]. Journal of Computing in Civil Engineering, 2001, 22:208-216.
  • 5Kirkpatrick S, Gelatt C D, Veccki M P. Optimization by simulated annealing[J]. Science, 1983, 220:671 - 680.
  • 6MEJDELL T, SKOGESTAD S. Output estimation using multiple secondary measurements:high-purity distillation[J]. Process Systems Engineering, 1993,9(10):1641-1653.
  • 7YANG S H, WANG X Z,MCGREAVY C, et al.Soft sensor based predictive control of industrial fluid catalytic cracking processes[J]. Institution of Chemical Engineers Trans. IchemE, 1998, 76(5):499-508.
  • 8CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(2) :273-297.
  • 9VAPNIK V N. The nature of statistical learningtheory [M]. 1st ed. New York: Springer-Verlag,1995.
  • 10YAN WEIWU,SHAO HUIHE, WANG XIAOFAN.Soft sensing modeling based on support vector machine and Bayesian model selection[J].

共引文献101

同被引文献168

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部