期刊文献+

斐波那契数列的矩阵和行列式表示(英文) 被引量:3

Representation of Fibonacci sequence of numbers via matrix and determinants
下载PDF
导出
摘要 为了更方便、更简洁地描述和表示斐波那契数列,将斐波那契数列与矩阵和行列式结合起来,得到了用矩阵的(1,1)分量或(2,2)分量以及行列式来表示斐波那契数列的一般项的结论. In order to describe and represent the Fibonacci sequence of numbers more convenient and more concise,the Fibonacci sequence of numbers with matrix and determinants was contacted,and the results on general term of Fibonacci sequence of numbers representable via(1,1)-component or(2,2)-component sequence of matrix and sequence of determinants are provided.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2010年第5期117-119,共3页 Journal of Zhengzhou University of Light Industry:Natural Science
基金 He'nan Provincial Natural Science Foundation(0611053000)
关键词 斐波那契数列 矩阵 行列式 Fibonacci sequence of numbers matrix determinant
  • 相关文献

参考文献1

二级参考文献4

  • 1Hardy G H. Wright E. M An introduction to the theory of numbers [M]. 5th ed. Oxford GreatBritain University Press, 1981:148-150.
  • 2Duncan R I. Application of uniform distribution to the Fibonacci number[J]. The Fibonacci Quarterly, 1967,5 ( 2 ):137-140.
  • 3Kuipers L Remark on a paper by R.L.Duncan concering the uniform distribution mod 1 of the sequence of the logarithms of the Fibonacci numbers[J].The Fibonacci Quarterly, 1969,7 (5):456-466.
  • 4Wenpeng Zhang. Some identities involving the Fibonacci number[J].The Fibonacci Quarterly, 1997,35:225-229.

共引文献4

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部