期刊文献+

基于分布式传感器信息融合的辐射源识别 被引量:9

Emitter identification based on distributed sensors information fusion
原文传递
导出
摘要 针对辐射源识别中基本概率赋值函数(BPAF)获取的难题,提出基于模糊集、灰关联分析和特征参数相似度的3种BPAF获取法,推演了获取BPAF的数学关系,建立了基于分布式传感器数种基本概率赋值获取法的信息融合辐射源识别模型,利用该模型进行了识别实验.识别过程中进行了多周期时域融合与分布式传感器空域融合,并在不同信噪比下与模板匹配法作识别率比较.实验对比结果表明,分布式传感器信息融合识别法是有效的,辐射源平均识别率超过90%. Aiming at the difficult problem of basic probability assignment function(BPAF) obtaining,three methods of BPAF obtaining based on fuzzy sets,gray association and character parameters resemble are analyzed.Mathematics expression of obtaining BPAF is induced.Distributed sensors information fusion emitter identification model based on three BPAF obtaining methods is constructed.Multi-periods information fusion in the time domain and distribution multi-sensors fusion in the spatial domain are carried out in the identification process.Finally,identification rate in different signal noise ratio (SNR) is compared with template matching method,and simulation results show that the proposed emitter identification method is effective and the emitter accurate identification rate is above 90%.
出处 《控制与决策》 EI CSCD 北大核心 2010年第12期1793-1798,共6页 Control and Decision
关键词 辐射源识别 分布式传感器 信息融合 基本概率赋值函数 证据理论 Emitter identification Distributed sensors Information fusion Basic probability assignment function Evidence theory
  • 相关文献

参考文献12

  • 1Langley L E. Specific emitter identification and classical parameter fusion technology[C]. IEEE WESCON'93 Conf Record. San Francisco, 1993: 377-381.
  • 2Kawalec A, Owczarek R. Specific emitter identification using intrapulse data[C]. 1st European Radar Conference. Amsterdam, 2004: 249-252.
  • 3ZHANGGexiang,JINWeidong,HULaizhao.Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals[J].Chinese Journal of Electronics,2005,14(2):337-341. 被引量:43
  • 4Carroll T L. A nonlinear dynamics method for signal identification[J]. Chaos: An Interdisciplinary J of Nonlinear Science, 2007, 17(1):23-30.
  • 5Abdulnasir Hossen, Fakhri Al-Wadahi, Joseph A Jervase. Classification of modulation signals using statistical signal characterization and artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 2007, 20(4): 463-472.
  • 6Dudczyk J, Matuszewski J, Wnuk M. Applying the relational modeling and knowledge based techniques to the emitter database design[C]. 14th Int Conf on Microwaves, Radar and Wireless Communications. Gdansk, 2002, 1: 172-175.
  • 7Matuszewski J, Kawalec A. Knowledge-based signal processing for radar identification[C]. 9th Int Conf on Modern Problems of Radio Engineering, Telecommunications and Computer Science. Warsaw, 2008: 302-305.
  • 8Chen Ting, Luo Jingqing. A fuzzy recognition method of emitter based on variable precision rough set model[C]. The 9th Int Conf on Signal Processing Proce. Beijing, 2008: 2242-2245.
  • 9Wang Jiegui. Emitter target recognition based on multisensor data fusion of ESM and IR[C]. The 9th Int Conf on Signal Processing Proc. Beijing, 2008, 1508-1511.
  • 10Xu Dan, Yang Bo, Jiang Wenli, et al. An improved SYDUIKPCA algorithm for specific emitter identification[C]. Proc of the 2008 IEEE Int Conf on Information and Automation. Zhangjiajie, 2008: 692-696.

共引文献42

同被引文献78

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部