期刊文献+

强跟踪CDKF及其在组合导航中的应用 被引量:16

Strong tracking CDKF and application for integrated navigation
原文传递
导出
摘要 针对扩展卡尔曼滤波器(EKF)在组合导航系统模型不确定时存在滤波精度下降甚至发散的问题,提出一种具有强跟踪性能的中心差分卡尔曼滤波器(CDKF).强跟踪CDKF基于强跟踪滤波器(STF)的理论框架,采用中心差分变换代替STF中的雅可比矩阵计算,兼具STF鲁棒性强,CDKF滤波精度高和实现简单的优点,有效克服了EKF在系统模型不确定时滤波失效的缺点.仿真结果验证了强跟踪CDKF的有效性. A central difference Kalman filter(CDKF) with strong tracking behavior is proposed to overcome the problem that extended Kalman filter(EKF) decreases in accuracy,even divergences when integrated navigation system has model uncertainty.Strong tracking CDKF views strong tracking filter(STF) as the basic theory framework and makes central difference transformation take place of calculating nonlinear function Jacobian matrix,so it combines strong robustness of STF with high accuracy and easy implementation of central difference transformation.The proposed strong tracking CDKF can avoid filtering failure of EKF while system model is uncertain.Simulation results show the effectiveness of the strong tracking CDKF.
出处 《控制与决策》 EI CSCD 北大核心 2010年第12期1837-1842,共6页 Control and Decision
基金 国家自然科学基金项目(60974104)
关键词 非线性 强跟踪中心差分卡尔曼滤波器 中心差分变换 鲁棒性强 精度高 Nonlinear Strong tracking CDKF Central difference transformation Strong robustness High accuracy
  • 相关文献

参考文献10

  • 1赵琳,王小旭,丁继成,曹伟.组合导航系统非线性滤波算法综述[J].中国惯性技术学报,2009,17(1):46-52. 被引量:74
  • 2Seong Yun Cho, Wan Sik Choi. Robust positioning technique in low-cost DR/GPS for land navigation[J]. IEEE Trans on Instrumentation and Measurement, 2006, 55(4): 1132-1142.
  • 3Maybeck P S. Stochastic models, estimation and control[M]. New York: Academic Press, 1979.
  • 4Zhou D H, Xi Y G, Zhang Z J. A suboptimal multiple extended Kalman filter[J]. Chinese J of Automation, 1992, 4(2): 145-152.
  • 5赵琳,王小旭,薛红香,夏全喜.带噪声统计估计器的Unscented卡尔曼滤波器设计[J].控制与决策,2009,24(10):1483-1488. 被引量:14
  • 6NΦrgarrd M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems[J]. Automatica, 2000, 36(11): 1627-1638.
  • 7Merwe R V, Wan E. Sigma-point Kalman filter for integrated navigation[C]. Proc of the 60th Annual Meeting of the Institute of Navigation. Dayton, 2004: 156-170.
  • 8Merwe R V. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[EB/OL]. (2004- 10-1). http://www.cslu.ogi.edu.
  • 9潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 10宫晓琳,房建成.模型预测滤波在机载SAR运动补偿POS系统中的应用[J].航空学报,2008,29(1):102-109. 被引量:6

二级参考文献120

共引文献315

同被引文献108

引证文献16

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部