期刊文献+

关于极小嵌入超曲面第一特征值的一个注记

A Note on the First Eigenvalue for Embedded Minimal Hypersurfaces
下载PDF
导出
摘要 设N是Ricci曲率以正常数k为下界的n+1维紧致定向黎曼流形,M是嵌入在N中的定向极小闭超曲面.本文给出M上Laplace算子的第一特征值λ1的新的下界估计,改进了已有结论,使之更接近于丘成桐关于该问题的猜想. Let M be a compact orientable minimal hypersurface embedded in a compact orientable Riemannian manifold N with Ricci curvature bounded from below by a positive constant k.A new lower bound of λ1,the first closed eigenvalue of the Laplacian on M was given.The result improved the related ones and could be regarded as some evidence that Yau's conjecture may be true.
作者 张燕朋
出处 《佳木斯大学学报(自然科学版)》 CAS 2010年第6期946-948,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 第一特征值 极小超曲面 RICCI曲率 the first eigenvalue minimal hypersurface Ricci curvature
  • 相关文献

参考文献4

  • 1Yau S T.Seminar on Differential Geometry[M].Annals of Math.Studies,No.102,Princeton Univ.Press,Princeton,N.J.,1982.
  • 2Choi H I,Wang Ai-nung.A First Eigenvalue Estimate for Minimal Hypersurfaces[J].J Diff Geom,1983,18:559-562.
  • 3Ho P T.A First Eigenvalue Estimate for Embedded Hypersurfaces[J].Diff Geom and its Appl,2008,26:273-276.
  • 4Reilly R.Applications of Hessian Operator in a Riemannian Manifold[J].Indiana Univ Math J,1977,26:459-472.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部