摘要
设N是Ricci曲率以正常数k为下界的n+1维紧致定向黎曼流形,M是嵌入在N中的定向极小闭超曲面.本文给出M上Laplace算子的第一特征值λ1的新的下界估计,改进了已有结论,使之更接近于丘成桐关于该问题的猜想.
Let M be a compact orientable minimal hypersurface embedded in a compact orientable Riemannian manifold N with Ricci curvature bounded from below by a positive constant k.A new lower bound of λ1,the first closed eigenvalue of the Laplacian on M was given.The result improved the related ones and could be regarded as some evidence that Yau's conjecture may be true.
出处
《佳木斯大学学报(自然科学版)》
CAS
2010年第6期946-948,共3页
Journal of Jiamusi University:Natural Science Edition