期刊文献+

密度误差对重力梯度正演精度的影响 被引量:2

Influences of density error on gravity gradient forward results
原文传递
导出
摘要 深入分析了重力梯度正演过程中密度误差对正演精度的影响.以地壳平均密度常数为参考,利用3种密度模型模拟地形的密度变化,建立了密度误差模型.然后分别对同一DEM进行了正演计算,具体分析密度误差对正演精度的影响.数值分析结果表明:a.密度误差对正演结果影响明显,当密度误差为0.2g/cm3时,梯度误差在10E左右;b.密度引起的梯度误差与地形相关,表现为误差数值与地形起伏成正比,变化趋势受地形调制;c.地形仍是梯度变化的主要因素,减小密度误差,DEM正演重力梯度数据可取得满意的精度. The influences of density error on gravity gradient forward results were analyzed.Three density variation models applied to the same digital elevation model(DEM) in forward calculation were used in the techniques proposed.Then corresponding results to a constant density model were compared respectively.Those differences indirectly reflect the impact of density error on forward results.Our numerical analysis shows density error has significant influence on forward results.Gradient difference approximates 10E when density error was.In addition,the difference was also influenced by terrain attributes,whose value proportional to terrain undulation and trend was also modulated by terrain.Comparing influence of density with terrain,latter part was still a major factor that causes change of gradient,so once density error was reduced,forward method may provide satisfactory gradient data with present DEM.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期89-93,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重点资助项目(60834005)
关键词 重力梯度 正演 数值分析 数字高程模型 密度误差 傅里叶变换 gravity gradient forward numeric analysis digital elevation model density error Fourier transform
  • 相关文献

参考文献10

  • 1Mickus K L, Hinojosa J H. The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform teehnique[J]. Journal of Applied Geophysics, 2001, 46(3) : 159 -174.
  • 2Dransfield M, Zeng Y. Airborne gravity gradiometry: terrain corrections and elevation error[J].Geophysics, 2009, 74(5): 137-142.
  • 3Jekeli C, Zhu L. Comparison of methods to model the gravitational gradients from topographic data Base [J].Geophysical Journal International, 2006, 166 (3) : 999-1 014.
  • 4Rogers M M. An investigation into the feasibility of using a modern gravity gradient instrument for pas -sive aircraft navigation and terrain avoidance [D]. Ohio: Air Force Institute of Technology Wright- Patterson AFB, Graduate School of Engineering and Management, 2009.
  • 5武凛,胡维,马杰,田金文.基于重力异常分析的重力梯度图制备方法[J].华中科技大学学报(自然科学版),2009,37(11):57-60. 被引量:5
  • 6武凛,马杰,周瑶,田金文.重力场匹配导航的全张量重力梯度基准图模拟[J].系统仿真学报,2009,21(22):7037-7041. 被引量:13
  • 7布雷斯韦尔.傅里叶变换及其应用[M].殷勤业,张建国,译.西安:西安交通大学出版社,2005.
  • 8张季生,高锐,李秋生,管烨,贺日政,祝尉洪.台湾海峡及邻区地球物理特征及地壳密度结构[J].地质论评,2008,54(5):694-698. 被引量:7
  • 9Chai Y F, Hinze W J. Gravity inversion of an interface above which the density contrast varies exponentially with depth[J]. Geophysics, 1998, 53(6):837-845.
  • 10Gorokhovich Y, Voustianiouk A. Accuracy assess ment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics[J]. Remote Sensing of Environment, 2006, 104(4): 409- 415.

二级参考文献37

共引文献20

同被引文献35

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部