摘要
应用著名的Dugundji延拓定理和Urysohn引理,将Hilbert空间E中有界闭凸集D上的k-集压缩映射和聚映射延拓到全空间,并给出了其在拓扑度计算方面的应用.
In this paper, we extended the k-set contraction mappings and condensing mappings on a bounded convex closed set D in a Hilbert space E to the entire space, and obtained some applications to the calculation of topological degree.
出处
《应用泛函分析学报》
CSCD
2010年第4期305-309,共5页
Acta Analysis Functionalis Applicata
关键词
k-集压缩映射
凝聚映射
延拓定理
拓扑度计算
郭大钧定理
k-set contraction mapping
condensing mapping
extension theorem
calculation of topological degree
Guo's theorem