摘要
给出F-弱滑脊性的定义,利用此性质,证明如果λ是一个具有F-弱滑脊性的数量空间,λ-乘数无序收敛是一个对偶不变性.如果(λ,β(λ,λ^(uβ)))是FAK-空间,则上述性质变成全程不变性.
In this note we establish the definition of F-weak gliding hump property firstly. By utilizing this property, we present that A-multiplier unordered convergent is a dual invariant property if A is a scalar space with F-WGHP. we also show that A-multiplier unordered convergence is a full invariant if (λ, β(λ,λuβ) is a FAK-space.
出处
《应用泛函分析学报》
CSCD
2010年第4期322-327,共6页
Acta Analysis Functionalis Applicata
关键词
λ-乘数无序收敛
F-弱滑脊性
对偶不变性
全程不变性
k-multiplier unordered convergence
F-weak gliding hump property
full invariant property
dual invariant property