期刊文献+

抽象对偶对上的滑脊性(英文)

Abstract Gliding Hump Properties in the Vector-Valued Dual Pair
下载PDF
导出
摘要 给出F-弱滑脊性的定义,利用此性质,证明如果λ是一个具有F-弱滑脊性的数量空间,λ-乘数无序收敛是一个对偶不变性.如果(λ,β(λ,λ^(uβ)))是FAK-空间,则上述性质变成全程不变性. In this note we establish the definition of F-weak gliding hump property firstly. By utilizing this property, we present that A-multiplier unordered convergent is a dual invariant property if A is a scalar space with F-WGHP. we also show that A-multiplier unordered convergence is a full invariant if (λ, β(λ,λuβ) is a FAK-space.
出处 《应用泛函分析学报》 CSCD 2010年第4期322-327,共6页 Acta Analysis Functionalis Applicata
关键词 λ-乘数无序收敛 F-弱滑脊性 对偶不变性 全程不变性 k-multiplier unordered convergence F-weak gliding hump property full invariant property dual invariant property
  • 相关文献

参考文献10

  • 1Noll D, Stadler. Abstract sliding hump techniques and characterization of barrelled space[J]. Studia Math, 1989, 94: 103-120.
  • 2WU Junde, LUO Jianwen, CUI Chengri. Abstract gliding hump properties and applications[J]. Taiwan Journal of Math, 2006, 3: 639-649.
  • 3CUI Chengri, WEN Songlong. General orlicz-pettis theorem[J]. Journal for Analysis and its Applica- tions(Zeischrift for Analysis und ihre Anwendungen ), 2005, 24: 637-648.
  • 4Dominikus Noll. Sequential completeness and spaces with the gliding hump property[JI. Manuscripta Math, 1990, 66: 237-252.
  • 5Swartz C, Stuart C. Uniform convergence in tile dual of a vector-valued sequence space[J]. Taiwan Journal of Math, 2003, 4: 665-676.
  • 6Stuart C. Weak sequential completeness of β-duals in sequence spaces[J]. Rochy Mountain Math J, 1996, 26: 1559-1568.
  • 7Swartz C. Inifite Matrices and the Gliding Hump[M]. Singapore: World Scientific Publications, 1996.
  • 8Antoski P, Swartz C. Matrix Methods in Analysis[M]. Heidelberg: Lecture Notes in Math, 1985: 1113.
  • 9LI Ronglu, CHO Min-Hyung. On the gliding hump property[J]. Taiwan Journal of Math, 1999, 3: 115-122.
  • 10WU Junde, LI Ronglu, Swartz C. Continuity and boundedness for operator-valued matrix mappings[J]. Taiwan Journal of Math, 1998, 4: 447-455.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部