期刊文献+

动力系统方法解决无界线性算子方程

Dynamical Systems Method for Solving Linear Unbound Operator Equations
下载PDF
导出
摘要 针对反问题中出现的第一类算子方程Au=f,其中A是实Hilbert空间H上的一个无界线性算子利用动力系统方法和正则化方法,求解上述问题的正则化问题的解:u'(t)=-A~*(Au(t)-f)利用线性算子半群理论可以得到上述正则化问题的解的半群表示,并证明了当t→∞时,所得的正则化解收敛于原问题的解. On studying the first kind of operator equation Au=f in the inverse problems, A is an unbounded linear operator in the real Hilbert space H. Using the methods of dynamical systems and regulaxization method, the regularization equation u' (t) = -A* (Au (t) - f) of the problem has been solved. With linear operator semigroup theory, we get the solution of the regularization equation, and prove that the regularized solution converged to the solution of the original problem when t→∞.
出处 《应用泛函分析学报》 CSCD 2010年第4期376-382,共7页 Acta Analysis Functionalis Applicata
基金 北京化工大学青年科学基金(QN0622) 北京化工大学大学生科研训练计划项目(081001003)
关键词 反问题 动力系统方法 正则化 半群 ill-posed problems dynamical systems method regularization semigroup
  • 相关文献

参考文献11

  • 1Andrey N Tikhonov, Vasiliy Y Arsenin. Solutions of Ill-posed Problems[M]. WINSTON V H & SONS Washington D C, 1977.
  • 2Landweber L. An iteration formula for Fredholm integral equation of the first kind[J]. Amer J Math, 1951, 73: 615-624.
  • 3Nashed M Z. Generalized Inverses and Applications[M]. New York: Academic Press, 1976.
  • 4Morozov V A. Methods for Solving Incorretly Posed Problems[M]. New York: Springer, 1984.
  • 5Kaltenbacher B. Some Newton-type methods for the regularization of nonlinear ill-posed problems[J]. Inverse Problems, 1997, 13: 729-753.
  • 6薛雅萍,吴开谡,刘晓晶.求解非线性算子方程的梯形牛顿法[J].应用泛函分析学报,2009,11(1):90-96. 被引量:3
  • 7JIN Qinian. A convergence analysis of the iteratively regularized Gauss Newton method under the Lipschitz condition[J]. Inverse Problems, 2008, 24(4).
  • 8Ramm A G, Dynamical Systems Method for Solving Operator Equations[M]. Elsevier, Amsterdam, 2007.
  • 9Hoang N S, Ramm A G. Dynamical systems gradient method for solving ill-conditioned linear algebraic systems[J], http://www.springerlink. com/content/100230/?p= 140e5c38d34c4fdc8e0b6931fl18ae88&pi= 0Acta Applicandae Mathematicae, 2009, 107(1/2/3).
  • 10Hoang N S, Ramm A G. Dynamical systems method for solving linear finite-rank operator equations[J]. Ann Polon Math, 2009, 95: 77-93.

二级参考文献8

  • 1王兴华,韩丹夫.弱条件下的α判据和Newton法[J].计算数学,1997,19(1):103-112. 被引量:18
  • 2Kantorovich L. On Newton's method (In Russian) [J]. Trudy Mat Inst Steklov, 1949, 28(1): 104-144.
  • 3Smale S. Newton's Method Estimates form Data. at One Point[M]. //Ewing R, Gross K, Martin C, et al. The Merging of Disciplines: New Directions in Pure. New York: Spring-Verlag, 1986. 185-196.
  • 4Han Danfu, Wang Xinghua. Convergence on a deformed Newton method[J]. Appl Math and Comput, 1998,94:65-72.
  • 5Argyros I K. On Newton's method under mild differentiability conditions and applications [J]. Appl Math Comput, 1999, 102: 177-183.
  • 6Argyros I K. A Newtons-Kantorovich thermo for equation involving n-Frechet differentiable operators and applications in radiative[J]. J Comput Appl Math, 2001, 131: 149-159.
  • 7Yamamoto T. A method for finding sharp error hounds for Newton's method under the Kantorovich assumptions[J]. Numer Math, 1998, 49: 203-220.
  • 8王兴华 郑士明.关于解非线性方程组的King-Werner迭代过程的收敛性.计算数学,1982,(1):70-79.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部