摘要
针对反问题中出现的第一类算子方程Au=f,其中A是实Hilbert空间H上的一个无界线性算子利用动力系统方法和正则化方法,求解上述问题的正则化问题的解:u'(t)=-A~*(Au(t)-f)利用线性算子半群理论可以得到上述正则化问题的解的半群表示,并证明了当t→∞时,所得的正则化解收敛于原问题的解.
On studying the first kind of operator equation Au=f in the inverse problems, A is an unbounded linear operator in the real Hilbert space H. Using the methods of dynamical systems and regulaxization method, the regularization equation u' (t) = -A* (Au (t) - f) of the problem has been solved. With linear operator semigroup theory, we get the solution of the regularization equation, and prove that the regularized solution converged to the solution of the original problem when t→∞.
出处
《应用泛函分析学报》
CSCD
2010年第4期376-382,共7页
Acta Analysis Functionalis Applicata
基金
北京化工大学青年科学基金(QN0622)
北京化工大学大学生科研训练计划项目(081001003)
关键词
反问题
动力系统方法
正则化
半群
ill-posed problems
dynamical systems method
regularization
semigroup