摘要
针对当前矿井通风机机械故障诊断所面临的问题,提出了一种粗糙集-遗传神经网络分类器模型和它的构造方法,模型先利用粗糙集理论约简样本决策表属性,然后再利用遗传神经网络进行网络训练。通过与基本BP网络模型的对比,验证了该方法用于故障诊断的有效性。
Aiming at the problem of the fault diagnosis on mine ventilator,a classification model and its modeling way were proposed,which based on rough set-genetic algorithm-neural network algorithm.First,decision-table was reduced using rougn set(RS)threy.Then the model carried on the training,by GA-BP network parametrs.Compared with the standard BP algorithm model,the result shows the effectiveness of the new proposed model.
出处
《煤炭技术》
CAS
北大核心
2010年第12期6-9,共4页
Coal Technology
关键词
矿井通风机
故障诊断
粗糙集
遗传算法
神经网络
BP算法
mine ventilator
fault diagnosis
rough set(RS)
genetic algorithm(GA)
neural network(NN)
BP algorithm