期刊文献+

超低频大气噪声幅度概率的SαS分布法 被引量:1

APD model for ELF atmospheric noise based on SαS distribution
下载PDF
导出
摘要 为正确辨识超低频大气噪声的幅度概率分布类型,对其进行有效抑制,首先,假设实际大气噪声幅度概率分布服从SαS(symmetric α stable)分布,从而估计出分布的模型参数;然后,由此计算出该参数下SαS分布的理论幅度概率分布并生成服从SαS分布的随机样本;最后,采用与实际数据APD比较和做Q-Q图的方法验证了分布拟合的正确性。结果表明:SαS分布可以有效地描述出超低频大气噪声的幅度概率分布。 The amplitude probability distribution(APD) of the extremely low frequency(ELF) atmospheric noise was fitted with the symmetric α-stable(SαS) distribution.Firstly,the parameters of the model were estimated by using the log|SαS| method on the assumption that the distribution of ELF atmospheric noise was SαS distribution.Secondly,the theoretical APD of the SαS distribution was calculated and compared with the actual ELF atmospheric noise data to test the correctness of the fitness.The result shows that SαS distribution can fit the APD of the ELF atmospheric noise effectively.
出处 《海军工程大学学报》 CAS 北大核心 2010年第6期91-95,共5页 Journal of Naval University of Engineering
关键词 SαS分布 超低频大气噪声 幅度概率分布模型 SαS distribution ELF atmospheric noise APD model
  • 相关文献

参考文献11

  • 1EVANS J E,GRIFFITHS A S.Design of a Sanguine noise processor based upon world-wide extremely low frequency (ELF) recordings[J].IEEE Trans.on Communications,1974,22(4):528-539.
  • 2INGRAM R F.Performance of the locally optimum threshold receiver and several suboptimum nonlinear receivers for ELF noise[J].IEEE Journal of Oceanic Engineering,1984,9(3):202-208.
  • 3FIELD E C,LEWINSTEIN M.Amplitude probability distribution model for VLF/ELF atmospheric noise[J].IEEE Trans.on Communications,1978,26(1):83-87.
  • 4CHRISSAN D A.Statistical analysis and modeling of low frequency radio noise and improvement of low frequency communications[D].California:Stanford University,1998.
  • 5NOLAN J P,WAMI A.Proceedings of applications of heavy tailed distributions in economics,engineering and statistics[M].Washington D.C.:American University,1999.
  • 6MA X,NIKIAS C L.Parameter estimation and blind channel identification in impulsive signal environments[J].IEEE Trans.on Signal Processing,1995,43(12):2884-2897.
  • 7NIKIAS C L,SHAO M.Signal Processing with Alpha-Stable Distributions and Applications[M].New York:Wiley & Sons Publication,1995.
  • 8WERON R.On the chambers-mallows-stuck method for simulating skewed stable random variables[J].Statistics & Probability Letters,1996,28:165-171.
  • 9张曙霞,徐大勇,蒋宇中,毕文斌.超低频大气噪声幅度概率分布模式的辨识[J].应用科学学报,2008,26(4):336-341. 被引量:5
  • 10李旭涛,王首勇,金连文.应用Alpha稳定分布对雷达杂波的辨识[J].电子与信息学报,2008,30(9):2042-2045. 被引量:8

二级参考文献21

  • 1王首勇,刘俊凯,王永良.机载雷达多杂波分布类型的恒虚警检测方法[J].电子学报,2005,33(3):484-487. 被引量:11
  • 2蒋宇中,胡修林,张曙霞.非高斯噪声中Turbo码的性能改进研究[J].应用科学学报,2006,24(4):336-340. 被引量:8
  • 3BRITTON M S, SCHOLZ M L. Modelling HF EMI using middleton models: results of trials and procedure for simulation, DSTO-TR-0235 [R].Salisbury, South Australia: Defence Science and Technology Organisation Technical Report, Aug. 1995.
  • 4WANG Xiaodong, POOR H V. Wireless communication systems: advanced techniques for signal reception [M]. United States: Prentice Hall PTR, 2004.
  • 5EL-MAHDY A El-S. Adaptive signal detection over fast frequency-selective fading channels under class A impulsive noise[J].IEEE Transactions on Communications, 2005, 53(4): 1110-1113.
  • 6ACHATZ R J, LO Y, PAPAZIAR P B, DALKE R A, HUFFORD G A. Man-made noise in the 136 to 138-MHz VHF meteorological satellite Band, 98-355 [R]. United States:NTIA Report, 1998.
  • 7YANG X S, PETROPULU A P, MIDDLETON D. Modeling of the LAN traffic microstructure based on the class A noise model [C]//IEEE International Symposium on Information Theory-Proceedings ,ISIT 2000, Sorrento, 2000:104.
  • 8MIDDLETON D. Canonical and quasi-canonical probability models of class A interference [J]. IEEE Transactions Electromagn Compatibility, May, 1983, EMC-25 (2):76 - 106.
  • 9MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of class A and class B electromagnetic interference [J]. IEEE Transactions on Electromagnetic Compatibility, 1979, EMC-21(3) : 190- 208.
  • 10Samorodnitsky G and Taqqu M. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance [M]. Chapman and Hall, NewYork, London, 1994, Chapter 1.

共引文献11

同被引文献12

  • 1Kay S M.统计信号处理基础-估计与检测理论[M].罗鹏飞,译.北京:电子工业出版社,2003.
  • 2NOLAN J P, tions of Heavy WAMI A. Proceedings of Applica Tailed Distributions in Economics Engineering and Statistics [M]. Washington DC American University, 1999.
  • 3TSIHRINTZIS G A, NIKIAS C L. Performance of optimum and suboptimum receivers in the pre- sence of impulsive noise modeled as an alpha-stable process[J]. IEEE Transactions on Communica- tions, 1993,43(2) :658-662.
  • 4GONZALEZ J G, ARCE G R. Optimality of the Myriad filter in practical impulsive-noise environ- ments [J]. IEEE Transactions on Signal Proces sing, 1998,49(2) :438-441.
  • 5ZOZOR S, BROSSIER J M, AMBLARD P O. A parametric approach to suboptimal signal detection in alpha-stable noise [J]. IEEE Transactions on Signal Processing, 2006,54(12) :4497-4509.
  • 6ARCE G R. Nonlinear Signal Processing: A Sta- tistical Approach [M]. Hoboken, New Jersey: John Wiley & Sons, 2005.
  • 7GONZALEZ J G. Robust Techniques for Wireless Communications in Non-Gaussian Environments [D]. Delaware: University of Delaware, 1997.
  • 8LIMH S, CHUAHTC, CHUAH H T. Onthe optimal alpha-k curve of the sample Myriad [J]. IEEE Signal Processing Letters, 2007,14 (8) : 545- 548.
  • 9NIK1AS C L, SHAO M. Signal Processing with Alpha-Stable Distributions and Applications l-M]. New York: John Wiley & Sons, 1995.
  • 10NOLAN J P. Numerical calculation of stable den- sities and distribution functions [J]. Communica- tions in Statistics-Stochastic Models, 1997,13 (3) : 759-774.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部