期刊文献+

在平均框架下球面上的Cesa'ro算子逼近

Approximation by the Cesa'ro Operators on the Sphere in the Average Case Setting
下载PDF
导出
摘要 逼近的思想和方法渗透于几乎所有的学科,其中包括自然科学和人文学科中的学科.函数逼近论是近现代数学的重要研究方向.文中讨论Cesa'ro算子在平均框架下球面上的Sobolev空间中的逼近并且获得平均误差估计. The thought and method of approximation permeate in almost all the disciplines, includingdiscipline in the natural science and humanities. We discuss the approximation by the Cesa'rooperators on the sphere in the average case setting and obtain the average error estimations.
作者 张艳伟
出处 《德州学院学报》 2010年第6期11-15,共5页 Journal of Dezhou University
关键词 BANACH空间 最佳逼近 SOBOLEV空间 Gaussian测度 banach space best approximation sobolev space gaussian measure
  • 相关文献

参考文献6

  • 1D.Lee.Approximation of linear operators on a Wiener space[J].Rocky Mountain J.Math,1986,(16):641-659.
  • 2D.Lee,G.W.Wasilwski.Aproximatiom of linear functionals on a Banaeh space with a Gaussian measure[J].J.Complexity,1986,(2):12-43.
  • 3Sun Y.S,Wang C.Y.Average error bounds of best approximation of continuous functions on the Wiener space[J].J.Complexity,1995,11:74-104.
  • 4V.I.Bogachev.Gaussiann Measures[J].Mathematical Surveys and Monographs[J].Amer.Math.Soc.,1998,(62).
  • 5Heping Wang,Xuebo Zhai,Yanwei Zhang.Approximation of functions on the Sobolev space on the sphere in the average cae setting[J].Journal of Complexity,2009:365-376.
  • 6Wang Chengyong.Best appromation problems and information-based complexity on abstract Wiener spaces[C].Dcotoral dissertation,1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部