期刊文献+

基于粒子群算法的冷连轧压下量与张力优化研究 被引量:2

Reduction Amount and Tension Optimization of Cold Rolling Mill with Particle Swarm Optimization
下载PDF
导出
摘要 薄板带钢冷轧过程的打滑是影响带钢质量的重要因素,而打滑因子则表征打滑现象的严重程度。首先介绍了影响冷连轧机轧制过程打滑的主要因素,并根据轧制参数利用逐次逼近法计算轧制力;其次,建立了以打滑因子均匀度为目标的优化函数,给出了基于粒子群优化(PSO)的算法框图,实现了轧制规程、张力制度及轧制力的优化;最后,利用现场采集的数据进行优化仿真。仿真结果表明优化算法正确,通过对压下量与张力的优化可以对打滑现象进行较好的控制。 Slipping in cold rolling process is an important factor related to the quality of cold rolling sheet.The severity of slip phenomenon is characterized by the factor of slipping.This paper describes the major factors affecting the slipping in cold rolling process firstly and calculates the rolling force based on rolling parameters by successive approximation method.Secondly,the optimization function is established based on uniformity of the factor of slipping,and the block diagram of optimized algorithm based on particle swarm optimization(PSO)is given.The optimization of rolling schedule,tension schedule and rolling force is achieved.Thirdly,the optimization simulation is carried out.The simulation results show that the optimization algorithm is correct.Through the optimization of reduction amount and tension,the slipping phenomenon can be better controlled.
作者 孙蓟泉 吕爽
出处 《机械工程与自动化》 2010年第6期97-99,共3页 Mechanical Engineering & Automation
关键词 冷连轧 打滑因子 粒子群优化算法 压下量 张力 cold continuous rolling the factor of slipping PSO reduction amount tension
  • 相关文献

参考文献3

二级参考文献41

  • 1刘靖,余四清.多种负荷均衡分配法优化冷轧板带生产规程[J].北京科技大学学报,1993(A12):92-96. 被引量:3
  • 2黄传清,连家创.关于板带轧制变形粘着区长度的计算[J].重型机械,1994(4):37-41. 被引量:5
  • 3梁国平.关于轧机的最佳负荷分配问题[J].钢铁,1980,15(1):42-42.
  • 4[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 5[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 6[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 7[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 8[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 9[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 10[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.

共引文献436

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部