期刊文献+

多样性引导的QPSO基因表达数据聚类算法

Diversity-guided quantum-behaved particle swarm optimization gene expression data clustering algorithm
下载PDF
导出
摘要 针对基于粒子群优化的聚类算法容易陷入局部最优值的缺点,提出将量子行为粒子群优化应用于基因表达数据的聚类分析问题中。在新的聚类算法中采用了对粒子群的多样性控制,以提高算法的全局收敛性能;此外还在新算法中引入了类似于K均值聚类的操作步骤,用以提高算法整体的收敛速度。选择Rand指数和Silhouette指数作为聚类评价标准,对5个人工和实际的基因表达数据集合进行聚类实验分析表明,新算法和基于粒子群优化的聚类算法相比,具有较快的收敛速度,粒子多样性的控制能有效改善算法的全局收敛性能。和其他一些常用的聚类算法比较,也能够获得更好的聚类评价,聚类效果更好。 Because it is easy for clustering algorithm based on Particle Swarm Optimization to fall into the local optimum,clustering of gene expression data using Quantum-behaved Particle Swarm Optimization is proposed.The control of diversity of particles is applied in the novel clustering algorithm to improve the global convergence.A K-means operator like in K-means clustering is also introduced to accelerate the convergence of proposed algorithm.Rand index and Silhouette index are selected as evaluation criteria of clustering.Clustering experiment on five artificial or real gene expression data sets shows that the new method outperforms the PSO clustering on convergence speed and the global convergence is proved through the control of di-versity.Contrast to some common clustering algorithmst,he better clustering solution and validation are also obtained.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第36期11-15,22,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60703106 60474030)~~
关键词 量子行为粒子群优化 基因表达数据 多样性引导 聚类 Quantum-behaved Particle Swarm Optimization gene expression data diversity-guided clustering
  • 相关文献

参考文献15

  • 1岳峰,孙亮,王宽全,王永吉,左旺孟.基因表达数据的聚类分析研究进展[J].自动化学报,2008,34(2):113-120. 被引量:25
  • 2Du Zhi-hua,Wang Yi-wei,Ji Zben.PK-means:A new algorithm for gene clustering[J].Computational Biology and Chemistry,2008,32:243-247.
  • 3Krishna K,Muty M.Genetic K-means algorithm[J].IEEE Trans on System,Man and Cybernetics-Part B:Cybernetics,1999,29:433-439.
  • 4Lu Y,Lu S,Fotouhi F,et al.Incremental genetic K-means algorithm and its application in gene expression data analysis[J].BMC Bioinformatics,2004,5:172-181.
  • 5Bandyopadhyay S,Mukhopadhyay A,Maulik U.An improved algorithm for clustering gene expression data[J].Bioinformatics,2007,23:2859-2865.
  • 6刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 7Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks,Perth,Australia,1995.[S.1.]:IEEE,1995:1942-1948.
  • 8Clerc M,Kennedy].The particle swarm:Explosion stability and convergence in a multi-dimensional complex space[J].IEEE Transaction on Evolutionary Computation,2002,6:58-73.
  • 9Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proc 2004 Congress on Evolutionary Computation,Piscataway,NJ,2004:325-331.
  • 10Thalarauthu A.Evaluation and comparison of gene clustering methods in microarray analysis[J].Bioinformatics,2006,22:2405-2412.

二级参考文献64

  • 1[1]Brown P O,Botstein D.Exploring the new world of the genome with DNA microarrays.Nature Genetics,1999,21(1):33-37
  • 2[2]Jain A K,Murty M N,Flynn P J.Data clustering:a review.ACM Computing Surveys,1999,31(3):264-323
  • 3[3]Schena M,Shalon D,Davis R W,Brown P O.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1999,270(5235):467-470
  • 4[4]Schena M,Scalon D,Heller R.Parallel human genome analysis:microarray-based expression monitoring of 1000 genes.Proceedings of the National Academy of Sciences of the United States of America,1996,93(20):10614-10619
  • 5[5]Ramsay G.DNA chips:state-of-the art.Nature Biotechnology,1998,16(1):40-44
  • 6[6]Lockhart D J,Dong H,Byrne M C,Follettie M T,Gallo M V,Chee M S.Expression monitoring by hybridization to high-density oligonucleotide arrays.Nature Biotechnology,1996,14(13):1675-1680
  • 7[7]Lipshutz R J,Fodor S P,Gingeras T R,Lockhart D J.High density synthetic oligonucleotide arrays.Nature Genetics,1999,21(1):20-24
  • 8[8]Harrington C A,Rosenow C,Retief J.Monitoring gene expression using DNA microarrays.Current Opinion in Microbiology,2000,3(3):285-291
  • 9[9]Jiang D X,Pei J,Zhang A D.An interactive approach to mining gene expression data.IEEE Transactions on Knowledge and Data Engineering,2005,17(10):1363-1378
  • 10[10]Kim H,Golub G H,Park H.Missing value estimation for DNA microarray gene expression data:local least squares imputation.Bioinformatics,2005,21(2):187-198

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部