摘要
目前遗传算法研究中,缺乏对历代群体进化规律的充分利用,因此引入学习机制,设计反映个体自主学习进化规律的自适应算子,并且结合现有的改进遗传算法,提出一种新的自适应遗传算法。最后以两个通用的测试函数为例对算法进行性能测试,结果表明,在采用相同参数的条件下,自适应算子能够以较低的代价提高遗传算法的收敛速度,并获得更好的最终优化结果。
The genetic operator is an important factor affecting the optimization effectiveness of genetic algorithm.However,among all the research of genetic algorithmt,he potential evolutional rule under all optimal individuals is not being fully uti-lized yet.Thus,an adaptive operator is designed to meet this shortfall,and combination with existing improved genetic algo-rithm,a design process of genetic algorithm applying the adaptive operator is presented.Finallyt,wo universal test functions are used to demonstrate the capability of the improved algorithm.The result indicates that the adaptive operator can achieve better convergence speed and optimum solution of genetic algorithm with the same parameters.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第36期34-36,39,共4页
Computer Engineering and Applications
关键词
学习机制
遗传算法
自适应算子
自适应遗传算法
learning mechanism
genetic algorithm
adaptive operatora
daptive genetic algorithm