摘要
将经典二值命题逻辑L中公式的真度概念推广到势为2的非均匀概率空间上;当p?(01)时,证明了全体公式的真度值之集在[0,1]中没有孤立点;利用真度定义公式间的p-相似度和伪距离,进而定义了p-逻辑度量空间,证明了该空间没有孤立点,并在此空间中提出了三种不同类型的近似推理模式。
The definition of truth degree in the classic 2-valued propositional logic is popularized to the unevenly distributed probability space whose power is 2.It is proved that the set of truth degree of all formulas has no isolated point when p be-longs to(0,1.)Moreovert,he similarity degree and pseudo-distance between two formulas are defined by means of the concept of truth degree of propositions,and p-logic metric space is built.At lastt,hree kinds of approximate reasoning model are presented.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第36期53-55,共3页
Computer Engineering and Applications
基金
陕西省教育厅自然科学研究计划项目(No.09JK439)
关键词
测度
p-真度
p-相似度
p-逻辑度量空间
近似推理
measure theory
p-truth degree
p-similarity degree
p-logic metric space
approximate reasoning