期刊文献+

演化硬件在模式识别中的应用综述 被引量:2

Survey on applying evolvable hardware for pattern recognition
下载PDF
导出
摘要 演化硬件以其速度快、灵活性强、实时适应等特点,在模式识别应用中易于建立学习时间短、识别速度快、精确分类的高效识别系统。在论述基于演化硬件模式识别技术的体系结构基础上,总结了不同的演化模型和各自的特性,并对各模型适合的应用领域进行了对比分析。介绍了国内外演化硬件模式识别技术研究的主要方向和发展现状,讨论了演化硬件在模式识别应用中的未来发展趋势和亟需解决的问题。 Evolvable Hardware(EHW) is rapidf,lexibile and real-time adaptativei,t’s very efficient to build a classification system with the features of short learning time,high processing speed and high classification accuracy.By analyzing the archi-tecture of EHW-based pattern recognition technology,various EHW-based pattern recognition models and their characteristics are summarized.Different application fields of various EHW recognition schemes are presented.The state-of-the-art researches and advantages on applying EHW for pattern recognition applications are discussed.This paper also indicates the challenges and the future research directions of EHW-based pattern recognition technology which should be further studied.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第36期180-183,共4页 Computer Engineering and Applications
基金 重庆市自然科学基金(No.2009BB2080) 重庆邮电大学科研基金(No.A2009-06)~~
关键词 演化硬件 模式识别 演化算法 在线演化 evolvable hardware pattern recognition evolutionary algorithm online evolution
  • 相关文献

参考文献32

  • 1Yao Xin,Higuchi T.Promises and challenges of evolvable hardware[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C,1999,29(1):87-97.
  • 2Garrison W G,Andrew M T.Introduction to evolvable hardware:A practical guide for designing self-adaptive systems[M].Hoboken:Wiley-IEEE Press,2006.
  • 3Mircea O N,Lukas S,Adrian S.Adaptive and evolvable hardware and systems:The state of the art and the prospectus for future development[C]//Proceedings of the 12th International Conference on Knowledge-based and Intelligent Information & Engineering Systems,Zagreb,Croatia,2008:310-318.
  • 4Masaya I,Isamu K,Hitoshi Y,et al.A pattern recognition system using evolvable hardware[C]//Proceedings of the 4th International Conference on Parallel Problem Solving from Nature,Berlin,Germany,1996:761-770.
  • 5许廷发,韩广良,宋建中,乔双,解成俊.函数级进化型硬件在模式识别中的应用[J].计算机工程与设计,2003,24(8):58-59. 被引量:1
  • 6Isamu K,Tsutomu H,Daisuke,N,et al.A gate-level EHW chip:Implementing GA operations and reconfigurable hardware on a single LSI[C]//Proceedings of the 2nd International Conference Evolvable systems:From Biology to Hardware,Lausanne,Switzerland,1998:1-12.
  • 7Didier K,Kenji K,Masaya I,et al.Robot learning using gatelevel evolvable hardware[C]//Proceedings of the 6th European Workshop on Learning Robots,Brighton,UK,1997:173-188.
  • 8Moritoshi Y,Jung H K,Ikuo Y.The application of genetic algorithms to the design of reconfigurable reasoning VLSI chips[C]//Proceedings of the 2000 International Symposium on FPGA,Yasunaga,2000:116-125.
  • 9Moritoshi Y,Taro N,Jung H K,et al.Kernel-based pattern recognition hardware:Its design methodology using evolved truth tables[C]//Proceedings of the 2nd NASA/DOD Workshop on Evolvable Hardware,Palo Alto,California,2000:253-262.
  • 10Moritoshi Y,Takahiro T,Kentaro U,et al.Evolvable reasoning hardware:Its application to the genome informatics[C]//Proceedings of the 2001 Congress on Evolutionary Computation,Seoul,Korea,2001:704-711.

二级参考文献51

  • 1王友仁,姚睿,朱开阳,黄三傲.仿生硬件理论与技术的研究现状与发展趋势分析[J].中国科学基金,2004,18(5):273-277. 被引量:11
  • 2李康顺,李元香,汤铭端,周爱民,吴志健.遗传程序设计在统计建模中的应用[J].系统仿真学报,2005,17(7):1597-1600. 被引量:11
  • 3原亮,丁国良,吴文术,娄建安,赵强.以FPGA和QUARTUS为基础平台的EHW环境实现[J].计算机与数字工程,2006,34(5):1-3. 被引量:6
  • 4姜大志,吴志健,康立山,汤铭端,李康顺.基因表达式程序设计的GRCM方法[J].系统仿真学报,2006,18(6):1466-1468. 被引量:25
  • 5陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 6de Garis H.Evolvable hardware in principles and practice,communications of the association for computer machinery[J].CACM Journal, 1997(8).
  • 7Virtual Computer Corporation.Hardware object technology development system user's guide[EB/OL].(1998-03).http://www.vcc.com.
  • 8Ferreira C.Gene expression programming:a new adaptive algorithm for solving problems[J].Complex System( S0219-5259), 2001.
  • 9Cao H,Kang L,Chen Yu J.Evolutionary modeling of systems of ordinary differential equations with genetic programming[J].Genetic Programming and Evolvable Machines,2000,1:309-337.
  • 10Zuo Jie,Tang Chang-jie,Zhang Tian-qing. Mining predicate association rule by gene expression programming[C]//LNCS 2419:International Conference for Web Information Age 2002,WAIM02. Berlin : Springer-Verlag, 2002 : 92-103.

共引文献79

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部