摘要
边数等于点数加1的连通图称为双圈图.设B(n)表示所有n阶双圈图的集合,μ(G)和Δ(G)分别表示图G的拉普拉斯谱半径和其最大度.本文证明了对于B(n)中的两个图G1和G_2,若Δ(G_1)>Δ(G_2)且△(G_1)≥(n+5)/2,则μ(G_1)>μ(G_2).作为该结论的应用,本文确定了B(n)中图的第五大至第八大的拉普拉斯谱半径以及相应的极图(其中前四大的拉普拉斯谱半径以及相应的极图在文献[C.X.He,J.Y.Shao,J.L.He,On the Laplacian spectral radii of bicyclicgraphs,Discrete Mathematics,2008,308:5981-5995.]中已确定).
Bicyclic graph is a connected graph in which the number of edges equals the number of vertices plus one.Denote byβ(n) the set of bicyclic graphs on n vertices.Letμ(G) and△(G) denote the Laplacian spectral radius and the maximum degree of a graph G, respectively.In this paper,it is proved that,for two graphs G_1 and G_2 inβ(n),if△(G_1)△(G_2) and A(G_1)≥(n+5)/2,thenμ(G_1)μ(G_2).As an application of this result,we determine the fifth to the eighth largest values of the Laplacian spectral radii among all the graphs inβ(n)(the first four values were determined in[C.X.He,J.Y.Shao,J.L.He,On the Laplacian spectral radii of bicyclic graphs,Discrete Mathematics,2008,308:5981-5995.]) together with the corresponding graphs.
出处
《数学进展》
CSCD
北大核心
2010年第6期703-708,共6页
Advances in Mathematics(China)
基金
Supported by Shanghai Leading Academic Discipline Project(No.S30104)
关键词
拉普拉斯谱半径
双圈图
最大度
Laplacian spectral radius
bicyclic graph
maximum degree