摘要
本文讨论了一类具有双参数非线性方程奇摄动边值问题.引入伸长变量,构造了问题的形式渐近解.利用微分不等式理论,证明了边值问题渐近解的存在性和一致有效性.由解的结构指出,在两参数一定的情况下,相应问题的解只具有一个边界层.
A class of singularly perturbed boundary value problem for nonlinear equation with two parameters is considered.Introducing the stretched variable,the formal asymptotic solution is constructed.By using the theory of differential inequalities the existence and uniform validity of the asymptotic solution for boundary value problem are proved.Prom the structure point out that under suitable conditions for two parameters,the solution of corresponding problem has only one boundary layer.
出处
《数学进展》
CSCD
北大核心
2010年第6期736-740,共5页
Advances in Mathematics(China)
基金
Project supported by the NSFC(No.40676016,No.40876010)
The Knowledge Innovation Project of the Chinese Academy of Sciences(No.KZCX2-YW-Q03-08)
The LASG Stale Key Laboratory Special Fund and in part by E-Institutes of Shanghai Municipal Education Commission(No.E03004)
关键词
非线性
两参数
奇摄动
nonlinear
two parameters
singular perturbation