摘要
证明了空间X是metaLindelf空间(screenable空间)当且仅当X在由具有点可数基(具有σ-不交基)的空间类构成的Alexandroff-Dowker extension中,回答了Arhangel'skii提出的相关问题.另外,通过下面结论对一重要结论进行了推广:可数紧空间是紧空间,如果该空间可以表示为可数多个Dσ-空间的并.
It is shown that a space X is metaLindel(o|¨)f(screenable) if and only if X is in the Alexandroff-Dowker extension of the class of spaces with a point-countable base(with aσ-disjoint base,respectively),which gives an answer to one problem raised by Arhangel'skii. Some results on D_σ-spaces are also obtained.In particular,we prove that a countably compact space X is compact if X is the union of a countable family of D_σ-spaces.
出处
《数学进展》
CSCD
北大核心
2010年第6期761-764,共4页
Advances in Mathematics(China)
基金
supported by Doctor Research Foundation of Shandong University of Finance (No.08BSJJ29)