期刊文献+

基于大间距准则和图像矩阵双向投影的人脸特征提取方法 被引量:3

Face Feature Extraction Based on Maximum Margin Criterion and Image Matrix Bidirectional Projection
下载PDF
导出
摘要 传统基于降维技术的人脸特征提取需要将图像转换成更高维的向量,从而加剧维数灾难问题,对于采用Fisher优化准则的特征提取,这也会使小样本问题更加突出.基于图像的矩阵表示,本文提出了一种新的基于大间距准则和矩阵双向投影技术的人脸特征提取方法(Maximum margin criterion and image matrix bidirectional projection,MMC-MBP).该方法一方面在计算散度矩阵时引入了能保持数据局部性的Laplacian矩阵,以保持数据的流形结构,从而提高识别正确率;另一方面采用了有效且稳定的大间距的优化准则即最大化矩阵迹差,能克服利用Fisher准则所带来的小样本问题;更重要的,MMC-MBP方法给出了求解最优双向投影矩阵的迭代计算过程,该迭代求解过程能保证目标函数的单调递增性、收敛性以及投影矩阵的收敛性,从而成功解决了传统基于张量(矩阵)投影技术的特征提取方法特征维数过高或者无收敛解的问题.最后广泛而系统的人脸识别实验表明,MMC-MBP的迭代求解过程能很快收敛,且相比Eigenfaces,Fisherfaces,Laplacianfaces等脸识别方法,具有更高的识别正确率,是一种有效的人脸特征提取方法. Conventional appearance-based face recognition needs to convert the image matrix into a higher dimensional vector.This will aggravate "the curse of dimensionality" problem and small sample size problem for those who adopt Fisher discriminant criterion.Moreover,existing feature extractions based on tensor(matrix) representation of image encounter the problem that dimensionality of extracted feature is still too high or there is no convergent solution.Based on matrix representation of image and matrix bidirectional projection,a novel feature extraction method called MMC-MBP(maximum margin criterion and image matrix bidirectional projection) for face recognition is proposed.On the one hand,since the Laplacian matrix,which can preserve the locality of the data set,has been introduced into the scatter matrix,MMC-MBP can preserve the intrinsic manifold structure of face set.On the other hand,MMC-MBP adopts an efficient and stable maximum margin criterion,so it can conquer the small sample size problem brought by Fisher discriminant criterion.What is more,an iterative procedure,which is proven to be convergent and can monotonously increase the objective value,is devised to compute the optimal projection matrices.Thus,the proposed MMC-MBP approach can conquer the problem of existing tensor(matrix) projection based feature extraction approaches.Extensive and systematic experiments on CMU PIE face database and Yale face database verify the high convergence speed of the iterative solution procedure and demonstrate that the proposed MMC-MBP outperforms the state-of-the-art methods in face feature extraction such as Eigenfaces,Fisherfaces,and Laplacianfaces.
出处 《自动化学报》 EI CSCD 北大核心 2010年第12期1645-1654,共10页 Acta Automatica Sinica
基金 国家自然科学基金(60970034 60603015) 高等学校全国优秀博士学位论文作者资助项目(2007B4)资助~~
关键词 特征提取 维数约简 大间距 人脸识别 Feature extraction dimensionality reduction maximum margin face recognition
  • 相关文献

参考文献27

  • 1Jolliffe I T. Principal Component Analysis. Berlin: Springer- Verlag, 2002.
  • 2Duda R O, Hart P E, Stork D G. Pattern Classification. New York: John Wiley and Sons, 2001.
  • 3Raudys S J, Jain A K. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3): 252-264.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 5Friedman J H. Regularized discriminant analysis. Journal of the American Statistical Assoeiation 1989, 84(405): 165-175.
  • 6Li H F, Jiang T, Zhang K S. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks, 2006, 17(1): 157-165.
  • 7Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 9Belkin M, Niyogi P. Laptacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
  • 10He X F, Niyogi P. Locality preserving projections. In: Proceedings of the 16th Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003. 153-160.

二级参考文献14

  • 1Chatterjee C, Kung Z, Roychowdhury V P. Algorithms for accelerated convergence of adaptive PCA. IEEE Transactions on Neural Networks, 2000, 11(2): 338-355.
  • 2Cao L J, Chua K S, Chong W K, Lee H P, Gu Q M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1-2): 321-336.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 4Swets D L, Weng J J. Using discriminant eigenfeature for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 5Yang J, Zhang D, Prangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 6Zhang D Q, Zhou Z H. (2D)2PCA: 2-directioned 2- dimensioned PCA for efficient face representation and recognition. Neurocomputing, 2005, 69(1-3): 224-231.
  • 7Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 8Gulmezoglu M B, Dzhafarov V, Keskin M, Barkana A. A novel approach to isolated word recognition. IEEE Transactions on Speech and Audio Processing, 1999, 7(6): 620-628.
  • 9Gulmezoglu M B, Dzhafarov V, Barkana A. The common vector approach and its relation to principal component analysis. IEEE Transactions on Speech and Audio Processing, 2001, 9(6): 655-662.
  • 10Cevikalp H, Neamtu M, Wilkes M, Barkana A. Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1): 4-13.

共引文献13

同被引文献43

  • 1CARREIRA-PERPINAN M A. A review of dimension reduction techniques[R]. Sheffield: University of Sheffield Tech. Rep CS-96-09, 1997: 1-69.
  • 2FODOR I K. A survey of dimension reduction techniques[R]. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 2002: 1-18.
  • 3ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
  • 4HYVINEN A. Survey on independent component analysis[J]. Neural Computing Surveys, 1999, 2: 94-128.
  • 5HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis[J]. Studies in Informatics and Control, 2002, 11(2): 205-207.
  • 6BELHUMEUR P N, HESPANHA J P, KRIENGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[J]. IEEE Trans Pattern anal Mach Intell, 1997(7): 711-720.
  • 7YANG J, ZHANG D, FRANGI A F. Two-dimensional PCA: a new approach to appearance based face representation and recognition[J]. IEEE Trans Pattern anal Mach Intell, 2004, 26(1): 131-137.
  • 8LI M, YUAN B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 9LI J, JANARDAN R, LI Q. Two-dimensional linear discriminant analysis[J]. Advances in Neural Information Processing Systems, 2004, 17: 1569-1576.
  • 10CHEN S, ZHAO H, KONG M. 2DLPP: a two-dimensionalof locality preserving projections[J]. Neuro Computing, 2007, 70(4/5/6): 912-921.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部