期刊文献+

基于局部聚类与图方法的半监督学习算法 被引量:6

Semi-supervised Learning Based on Graph and Local Quick Shift
下载PDF
导出
摘要 基于图的算法已经成为半监督学习中的一种流行方法,该方法把数据定义为图的节点,用图的边表示数据之间的关系,在各种数据分布情况下都具有很高的分类准确度.然而图方法的计算复杂度比较高,当图的规模比较大时,计算所需要的时间和存储都非常大,这在一定程度上限制了图方法的使用.因此,如何控制图的大小是基于图的半监督学习算法中的一个重要问题.本文提出了一种基于密度估计的快速聚类方法,可以在局部范围对数据点进行聚类,以聚类形成的子集作为构图的节点,从而大大降低了图的复杂度.新的聚类方法计算量较小,通过推导得到的距离函数能较好地保持原有数据分布.实验结果表明,通过局部聚类后构建的小图在分类效果上与在原图上的结果相当,同时在计算速度上有极大的提高. Graph-based semi-supervised methods define a graph where the nodes are labeled and unlabeled examples in the dataset,and edges reflect the similarity of examples.These methods usually assume label smoothness over the graph.Graph methods are nonparametric,discriminative,and transductive in nature.These methods take high classification accuracy on variant data distributions.But the computation complexity is very high.As the size of dataset grows,the graph will be too large to compute and this limits the extension of its usage.In this paper,we propose a novel method for fast computation based on local clustering,which is very efficient for reduction of graph size and can maintain the accuracy at the same time.The local clustering method is of low computation complexity and the data structure can be preserved by a newly designed distance function.Experimental results show that this approach can preserve the accuracy of purely graph-based methods and significantly reduce computational cost.
出处 《自动化学报》 EI CSCD 北大核心 2010年第12期1655-1660,共6页 Acta Automatica Sinica
基金 中国国际科技合作项目(2009DFA12290)资助~~
关键词 半监督学习 图方法 密度估计 局部聚类 Semi-supervised learning graph-based methods density estimate local clustering
  • 相关文献

参考文献14

  • 1Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the 18th International Conference on Machine Learning. Williamstorn, USA: Morgan Kaufmann Publisher, 2001. 19-26.
  • 2Zhu X J, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning. Washington D. C., USA: Morgan Kaufmann Publisher, 2003. 912-919.
  • 3Zhou D, Bousquen O, Lal T N, Weston J, Scholkoph B. Learning with local and global consistency. In: Proceedings of the Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004. 321-328.
  • 4Zhu X J, Lafferty J. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM. 2005. 1052-1059.
  • 5Zhu X J. Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, USA, 2005.
  • 6Zhou D, Scholkopf B. A regularization framework for learning from graph data. In: Proceedings of the 21st International Conference on Machine Learning. Banff, Canada: Morgan Kaufmann Publisher, 2004. 132-137.
  • 7Delalleau O, Bengio Y, Roux N L. Semi-Supervised Learning. Cambridge: MIT Press, 2006. 87-96.
  • 8Pfahringer B, Leschi C, Reutemann P. Scaling up semisupervised learning: an efficient and effective LLGC variant. In: Proceedings of the llth Pacific-Asia Conference on Knowledge Discovery and Data Mining. Nanjing, China: Springer, 2007. 236-247.
  • 9Zhou Z H, Ng M, She Q Q, Jiang Y. Budget semi-supervised learning. In: Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Bangkok, Thailand: Springer, 2009. 588-595.
  • 10Wang F, Zhang C S. Label propagation through linear neighborhoods. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(1): 55-67.

同被引文献68

  • 1吴庆涛,邵志清.入侵检测研究综述[J].计算机应用研究,2005,22(12):11-14. 被引量:19
  • 2韩家炜,堪博 M.数据挖掘:概念与技术[M].范明,孟小峰.译.2版.北京:机械工业出版社,2007:30-65.
  • 3杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15
  • 4ZHU Xiao-jin. Semi-supervised learning literature sur- vey[R]. Wisconsin, USA: Department of Computer Sciences, University of Wisconsin, 2008.
  • 5YAN Shui-cheng, XU-Dong, ZHANG Ben-yu, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (1) : 40 - 51.
  • 6QIU Xi-peng, WU Li-de. Face recognition by stepwise nonparametric margin maximum criterion[C]// Proceedings of the 10th International Conference on Computer Vision. Beijing: IEEE Computer Society ,2005:1567 - 1572.
  • 7CAI Deng, HE Xiao-fei, ZHOU Kun, et al. Locality sensitive discriminant analysis[C] // International Joint Conference on Artificial Intelligence. Hyderabad Mor- gan Kaufmann Publishers, 2007 : 708 - 713.
  • 8BELKIN M, NIYOGI P, SINDHWANI V. Manifold Regularization: A geometric framework for learning from labeled and unlabeled examples. [J]. Journal of Machine Learning Research, 2006, 7(11) : 2399 - 2434.
  • 9ZHOU D, BOUSQUEN O, LAL T N, et al. Learning with local and global consistency[C] // Advances in Neural Information Processing Systems. Cambridge: MIT, 2004:321 - 328.
  • 10XUE Hui, CHEN Song-can, YANG Qiang, Discrimi-natively regularized least-squares classification [J ]. Pattern Recognition, 2009,42 ( 1 ) :93 - 104.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部