摘要
讨论了两两NQD阵列行和的弱收敛性、L_p收敛性和完全收敛性,在{X_(nk);1≤k≤k_n↑∞,n≥1}是Cesaro一致可积的相关条件下,获得了两两NQD阵列行和的弱收敛性、Lp收敛性和完全收敛性定理,将独立阵列行和的相关极限定理推广到了两两NQD阵列行和的情形.
The week law of large numbers,L_pconvergence and complete convergence of the maximum of sums of pairwise NQD random matrix sequences are discussed.Under the condition that the{X_(nk);1≤k≤k_n↑∞,n≥1}is Cesaro uniformly integrable,the authors are able to give the week law of large numbers,L_pconvergence and complete convergence of the maximum of sums of pairwise NQD random matrix sequences,which generalize the corresponding limit results for independent random matrix sequences to pairwise NQD random matrix sequences.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第23期155-160,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(50778009)
关键词
两两NQD阵列行和
收敛性
一致可积
sums of pairwise NQD random matrix sequences
convergence properties
uniformly integral