期刊文献+

基于约束总体最小二乘方法的近似消逝理想算法

AN APPROXIMATE VANISHING IDEAL ALGORITHM BASED ON CONSTRAINED TOTAL LEAST SQUARES
原文传递
导出
摘要 提出了基于约束总体最小二乘方法的近似消逝理想算法.给定经验点集X~ε,该算法输出序理想O和多项式集合G.当O中单项的个数等于经验点集X~ε的基数时,G即为X~ε的近似消逝理想基.该算法充分考虑赋值向量的扰动之间的内在联系,因此在关注向量的数值相关性方面,算法优于目前其它同类算法. This paper provides an algorithm of approximate vanishing ideal based on constrained total least squares technique.Given a set of empirical points X~ε,the algorithm outputs an order idealO and a set of polynomialsG.If #O = #X~ε,thenG forms a basis for the approximate vanishing ideal of X~ε.Since the algorithm pays sufficient attention to the relationship among the perturbations of the evaluation vectors,it gives a better performance than other similar algorithms in the numerical dependence.
出处 《系统科学与数学》 CSCD 北大核心 2010年第11期1478-1490,共13页 Journal of Systems Science and Mathematical Sciences
关键词 经验点集 近似消逝理想 总体最小二乘 约束总体最小二乘 Empirical point approximate vanishing ideal total least squares constrained total least squares
  • 相关文献

参考文献11

  • 1Abbott J, Fassino C, Torrente M. Stable border bases for ideals of points. Journal of Symbolic Computation, 2008, 43: 883-894.
  • 2Sauer T. Approximate varieties, approximate ideals and dimension reductions. Numerical Algorithms, 2007, 45: 295-313.
  • 3Heldt D, Kreuzer M, Pokutta S et al. Approximate computation of zero-dimensional polynomial ideals. Journal of Sybmolic Computation, 2009, 44: 1566-1591.
  • 4Fassino C. Almost vanishing polynomials for sets of limited precision points. Journal of Symbolic Computation, 2010, 45(1): 19-37.
  • 5Cox D, Little J, O'Shea D. Ideal, Varieties and Algorithms. Undergraduate Texts in Mathematics, New York: Springer, 2007.
  • 6Kreuzer M, Robbiano L. Computational Commutative Algebra. Berlin: Springer, 2008.
  • 7Kreuzer M, Poulisse H, Robbiano L. From Oil Fields to Hilbert Schemes. Approximate Commutative Algebra, Texts and Monographs in Symbolic Computation, New York: Springer, 2009.
  • 8Golub H, Van Loan C F. An analysis of the total least squares problem. SIAM J. Num. Anal., 1980, 17: 883-893.
  • 9Van Huffel S, Vandewalle J. Analysis and properties of the generalized total least squares problem AX = B when some of all columns in A are subject to error. SIAM J. Matrix Anal. Appl., 1989, 10: 294-315.
  • 10Abatzoglou T J, Mendel J M. Constrained total least squares. Proceedings of 1987 IEEE ICASSP, Dallas, USA, 1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部