期刊文献+

带有干扰和非线性指标的脉冲时滞SI模型的渐近性质(英文) 被引量:1

The Asymptotic Property of an Impulsive Delay SI Model with Disturbance and a Nonlinear Incidence
原文传递
导出
摘要 研究了一个带有干扰和非线性指标的脉冲时滞SI模型,通过引入三个引理,获得该疾病最终灭绝和保持持久的充分性条件。结果表明,时滞因素对该模型的全局吸引性和持久性都有影响。此外。如果脉冲免疫接种率的最大值和最小值之比大于某一阈值,则该疾病最终灭绝,本文的主要特点是将多时滞和变系数引入脉冲SI模型,数值模拟表明,该系统具有复杂的动力学行为,包括周期解和周期振荡. An impulsive delayed SI model with disturbance and a nonlinear incidence was formulated and analyzed.By introducing three thresholds,the sufficient conditions for eradication and permanence of the disease are obtained.Furthermore the global attractive of the infection-free periodic solution and permanence of the model are both influenced by time delay,the disease will disappear if the ratio of the maximum to minimum of the pulse vaccination rate is lager than some value.The main feature of this paper is that multi-delays and variable coefficients are introduced into the SI model.Numerical results show that the system has complex dynamics including the infection-free periodic solution and periodic oscillations.
出处 《生物数学学报》 CSCD 北大核心 2010年第3期385-400,共16页 Journal of Biomathematics
基金 Foundation item:Supported by the NSF of China(No.60671063,10871 122)
关键词 SI模型 时滞 脉冲 持久 全局吸引性 SI model Time delay Impulse Permanence Global attractivity
  • 相关文献

参考文献23

  • 1Lu Z, Chi X, Chen L. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]. Math Comput Model, 2002, 86:1039-1057.
  • 2Onofrio A D. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Math Biosci, 2002, 179(1):57-72.
  • 3Zeng G Z, Chen L, Sun L H. Complexity of an SIR epidemic dynamics model with impulsive vaccination control[J]. Chaos, Solitons and Fractals, 2005, 26:495-505.
  • 4Bai Y, Jin Z. Prediction of SAILS epidemic by BP neural networks with online prediction strategy[J]. Chaos, Solitons and Fractals, 2005, 26:559-569.
  • 5El-Gohary Awad. Optimal control of the genital herpes epidemic[J]. Chaos, Solitons and Fractals, 2001. 12:1817-1822.
  • 6Li G, Jin Z. Global stability of an SEI epidemic model[J]. Chaos, Solitons and Fractal, 2004, 21:925--931.
  • 7Li X. Wang W. A discrete epidemic model with stage structure[J]. Chaos, Solitons and Fractals, 2005, 26:947-958.
  • 8Engbert R, Drepper F R. Chance and chaos in population biology-models of recurrent epidemics raid food chain dynamics[J]. Chaos, Solitons and Fractals, 1994, 4:1147-1169.
  • 9Gao L Q, Hethcote H W. Disease transmission models with density-dependent demographics [J].J. Math. Biol, 1992, 30:717-731.
  • 10Anderson R M, May R M. Vaccination against rubella and tackles, quantitative investigate -ons of different policies[J]. J. Hyg, 1983, 90:259-325.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部