期刊文献+

基于交叉和变异的多目标粒子群算法 被引量:14

Multi-objective particle swarm optimization based on crossover and mutation
下载PDF
导出
摘要 为了保证粒子群算法求得的非劣解尽可能接近真实的Pareto前沿并保持多样性分布,提出一种基于交叉和变异的多目标粒子群算法(CMMOPSO)。在CMMOPSO中,首先识别Pareto前沿的稀疏部分包含的粒子,并对这些粒子进行交叉操作以增加多样性分布;接着对远离Pareto前沿的粒子进行变异操作,以提升粒子向真实的Pareto前沿飞行的概率。在基准函数的测试中,结果显示CMMOPSO比其他算法有更好的运行效果。 In order to minimize the distance of the Pareto front produced by Particle Swarm Optimization (PSO) with respect to the global Pareto front and maximize the spread of solutions found by PSO, a multi-objective particle swarm optimization based on crossover and mutation (CMMOPSO) : In the CMMOPSO, firstly, the number of particle in sparse part of Pareto front was defined and the crossover operator was employed to increase the diversity of the nondominated solutions; next, the mutation operation was used for the particles far away from Pareto front to improve the probability to fly to Pareto front. In benchmark functions, CMMOPSO achieves better solutions than other algorithms.
出处 《计算机应用》 CSCD 北大核心 2011年第1期82-84,117,共4页 journal of Computer Applications
基金 国家863计划项目(2008AA04A105) 广东省自然科学基金资助项目(9451806001002294) 贵州教育厅社科项目(0705204) 遵义科技攻关项目([2008]21号)
关键词 多目标优化 粒子群算法 交叉 变异 外部存档 multi-objective optimization Particle Swarm Optimization (PSO) crossover mutation external archive
  • 相关文献

参考文献8

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization [ C]// Proceedings of IEEE International Conference on Neural Networks. Washington, DC: IEEE, 1995:1942-1948.
  • 2COELLO C A C, PULIDO G muhiple objectives with particle T, LECHUGA M S. Handling swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 ( 3 ) : 256 - 279.
  • 3LEONG W-F, YEN G G. PSO-based muhiobjective optimization with dynamic population size and adaptive local archives [ J ]. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 2008, 38 (5) : 1270 - 1293.
  • 4YEN G G, LEONG W-F. Dynamic multiple swarms in multiobjective particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2009, 39(4) : 890 -911.
  • 5MARTINEZ S Z, COELLO C A C. Hybridizing an evolutionary algorithm with mathematical programming techniques for multiobjective optimization [C]// Proceedings of the 10th Annual Genetic and Evolutionary Computation Conference. New York: ACM, 2008 : 769 - 770.
  • 6STACEY A, JANCIC M, GRUNDY I. Particle swarm optimization with mutation [C]// CEC '03 : Proceedings of IEEE Congress on Evolutionary Computation. Washington, DC : IEEE, 2003 : 1425-1430.
  • 7DEB K, GOYAL M. A combined genetic adaptive search ( GeneAS ) for engineering design [ J ]. Computer Science and Informatics, 1996, 26(4) :30-45.
  • 8DEB K, PRATAP A, AAGRWALI S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002,6(2) : 182 -197.

同被引文献128

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部