期刊文献+

基于浏览偏好挖掘的实时商品推荐方法 被引量:12

Real-time recommendation method based on browsing preferences mining
下载PDF
导出
摘要 在分析了当前推荐技术中各种算法的优缺点和及其存在的主要问题的基础上,提出一种浏览偏好挖掘的实时商品推荐方法。该算法通过分析用户Web游览记录,并使用贝叶斯网预测其浏览偏好,然后将用户偏好与商品特征进行匹配计算进而产生商品推荐。实验表明该方法能为用户提供更为精确有效的个性化推荐。 After analyzing the advantages and disadvantages of various algorithms and the main problems of the current recommended technology, this paper put forward a real-time recommendation method based on user' s browsing preferences mining. The algorithm first used Bayesian Network (BN) to estimate user's preferences by analyzing his Web browsing history, and then generated recommendations by calculating the matching degree of user's preferences and the characteristics of goods. The experimental results indicate that this method can provide personal recommendations more accurately and efficiently.
出处 《计算机应用》 CSCD 北大核心 2011年第1期89-92,共4页 journal of Computer Applications
基金 国家科技支撑计划项目(2008BAH24B03) 浙江省科技计划重大科技专项(优先主题)工业项目(2008C01060-5) 宁波市重大(重点)科技计划项目(2008B10023) IBM共享大学计划研究项目(2010)
关键词 个性化推荐 电子商务 偏好挖掘 贝叶斯网络 特征匹配 personalized recommendation E-commerce preferences mining Bayesian Network (BN) feature matching
  • 相关文献

参考文献18

  • 1RESNICK P, VARIAN HR. Recommender systems[J]. Communications of the ACM, 1997, 40(3) : 56 -58.
  • 2马丽.电子商务个性化推荐技术分析及比较[J].计算机系统应用,2008,17(12):58-61. 被引量:18
  • 3许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 4SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recom- mendation algorithms for E-commerce[ C]// Proceedings of the 2nd ACM Conference on Electronic Commerce. New York: ACM, 2000: 158 - 167.
  • 5SARWAR B M. Sparsity, scalability, and distribution in recommender systems[ D]. Minneapolis: University of Minnesota, 2001.
  • 6BRIDGE D, KELLEHER J. Experiments in sparsity reduction: Using clustering in collaborative recommenders[ C]// Proceedings of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science. London: Springer-Verlag, 2002: 144- 149.
  • 7AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1993:207-216.
  • 8BURKE R. Knowledge-based recommender systems[ J]. Encyclopedia of Library and Informanation Systems, 2000, 69(32): 180 -200.
  • 9万正峰,刘云华.西方的顾客忠诚研究及实践启示[J].当代财经,2003(2):89-92. 被引量:71
  • 10谢意.基于浏览偏好挖掘的实时商品推荐方法分析与研究[D].杭州:浙江大学,2010.

二级参考文献106

  • 1余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 2张彦,邵志清.具有概念联想功能的特定领域分词词典的自动构建[J].计算机工程,2004,30(20):148-150. 被引量:3
  • 3Sarwar BM. Sparsity, scalability, and distribution in recommender systems [ Ph.D. Thesis ]. Minneapolis : University of Minnesota, 2001.
  • 4Schafer JB, Konstan JA, Riedl J. E - commerce recommendation applications. Data Mining and Knowledge Discovery, 2001, 5(1 -2) : 115 - 153.
  • 5Schafer JB, Konstan JA, Riedl J. Recommender systems in e - commerce. In : Proceedings of the 1 st ACM Conference on Electronic Commerce. New York: ACM Press, 1999:158-166.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E - commerce//Proceedings of the 2nd ACM Conference on Electronic Commerce. New York : ACM Press, 2000 : 158 - 167.
  • 7Demiriz A. Enhancing product recommender systems on sparse binary data. Data Mining and Knowledge Discovery, 2004, 9(2): 147- 170.
  • 8Mooney R J, Roy L. Content- based book recommending using learning for text categorization//Proceedings of the 5th ACM Conference on Digital Libraries. New York: ACM Press, 2000:195 -204.
  • 9Bollacker KD, Lawrence S, Giles CL. Discovering relevant scientific literature on the web. IEEE Intelligence Systems, 2000, 15 ( 2 ) : 42 - 47.
  • 10Chen L, Sycara K. WebMate: a personal agent for browsing and searching//Proceedings of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 132 - 139.

共引文献633

同被引文献128

引证文献12

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部