期刊文献+

基于运动目标检测的视频水印算法 被引量:6

Video watermarking algorithm based on moving object detection
下载PDF
导出
摘要 为了提高视频水印的鲁棒性,提出一种基于运动目标检测技术的算法。通过相邻帧差法提取并标记视频图像序列中的运动目标,并采用图像局部奇异值分解(SVD)算法,实现水印的嵌入和盲提取过程。在仿真实验中,通过计算水印嵌入后图像的峰值信噪比,证明该水印算法具有很好的不可见性和隐蔽性;并使用strimark软件对嵌入水印后图像进行几何攻击,分析水印图像的相关系数,验证本算法具有很好的鲁棒性。 To improve the robustness of video watermarking, a video watermarking algorithm based on moving object detection was proposed. The paper made use of the temporal differencing algorithm to extract and sign the moving targets in the video image sequences, and then, achieved watermark embedding and extraction processes by Singular Value Decomposition (SVD) method. In the simulation, the Peak Signal-to-Noise Ratio (PSNR) was calculated to show that this scheme has a great invisibility and concealment, the strimark software was used to geometricly attack on watermarked image, the correlation coefficient was analyzed to prove that this algorithm has a great robustness.
作者 陈希 周萍
出处 《计算机应用》 CSCD 北大核心 2011年第1期258-259,262,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60961002)
关键词 运动目标检测 奇异值分解 相邻帧差法 峰值信噪比 视频水印 moving object detection Singular Value Decomposition (SVD) temporal differencing Peak Signal-to-Noise Ratio (PSNR) video watermarking
  • 相关文献

参考文献5

二级参考文献29

  • 1王超,侯丽敏.一种新的高斯混合模型参数估计算法[J].上海大学学报(自然科学版),2005,11(5):475-480. 被引量:3
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3毛晓波,谢晓芳,张晓林.消除运动物体阴影的最大色度差分检测法[J].电子技术应用,2007,33(1):61-63. 被引量:9
  • 4KORNPROBST P,DERICHE R,AUBERT G. Image sequence analysis via partial difference equations[ J]. Mathematical Imaging and Vision, 1999,11 ( 1 ) :5- 26.
  • 5ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J]. Proceedings of the IEEE, 2002,90(7) :1151- 1163.
  • 6TANG Yi, LIU Wei-Ming, XIONG Liang. Improving robustness and accuracy in moving object detection using section-distribution background model[ C ]//Proc of the 4th International Conference on Natural Computation. 2008 : 167- 174.
  • 7STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recogniton. 1999:246-252.
  • 8STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[J]. IEEE Trans on Pattern Analysis and Machine intelligence, 2000,22 ( 8 ) :747- 757.
  • 9MAGEE D. Tracking multiple vehicle using foreground, background and motion models [ J ]. image and Vision Computing, 2004,22 (2) :143- 155.
  • 10陈宜稳,王威,王润生.分块建模和点建模联合的背景重建方法[C]//全国第18届计算机技术与应用(CACIS)学术会议论文集:计算机技术与应用进展.2007:1007-1010.

共引文献115

同被引文献67

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部