摘要
Dynamic fluorescence diffuse optical tomography (FDOT) is important in drug deliver research. In this letter, we first image the metabolic processes of micelles indocyanine green throughout the whole body of a nude mouse using the full-angle FDOT system with line illumination (L-FDOT). The resolution of L-FDOT is evaluated using phantom experiment. Next, in vivo dynamic tomographic images (100 frames; approximately 170 min) of mouse liver and abdomen are shown and cross-validated by planar fluorescence reflectance imaging in vitro. Results provide evidence on applicability of the tomographic image wholebody biological activities in vivo on minute timescale (approximately 1.7 min) using L-FDOT.
Dynamic fluorescence diffuse optical tomography (FDOT) is important in drug deliver research. In this letter, we first image the metabolic processes of micelles indocyanine green throughout the whole body of a nude mouse using the full-angle FDOT system with line illumination (L-FDOT). The resolution of L-FDOT is evaluated using phantom experiment. Next, in vivo dynamic tomographic images (100 frames; approximately 170 min) of mouse liver and abdomen are shown and cross-validated by planar fluorescence reflectance imaging in vitro. Results provide evidence on applicability of the tomographic image wholebody biological activities in vivo on minute timescale (approximately 1.7 min) using L-FDOT.
基金
supported by the National Natural Science Foundation of China (Nos.81071191,30670577,60831003,30930092,and 30872633)
the Tsinghua-Yue-Yuen Medical Science Foundation
the National Basic Research (973) Program of China(No.2011CB707701)
the National High-Tech Research and Development (863) Program of China (No.2006AA020803)