期刊文献+

证据推理的遥感图像分类方法与应用 被引量:1

Evidential Reasoning Remote Sensing Image Classification Method and Application
原文传递
导出
摘要 遥感图像分类一直是遥感研究领域的核心问题。然而,传统遥感分类方法在地物复杂地区不能取得满意效果。不但分类精度不够理想,分类灵活性也存在不足。本文尝试引入证据推理"软"分类方法,选择小兴安岭山区一景TM遥感图像,基于用户知识和经验,通过人机交互处理,以累计信任度(CBV)最大为划分像元归类的原则得到证据推理方法的分类图像。结果表明,整体分类精度从最大似然法的78.74%提高到82.28%,kappa系数从0.67提高到0.71。但该方法对于裸地分类精度不高,通过人为设定各类别CBV阈值的方法,获得了人为干预的证据推理方法分类图,其整体分类精度达到了87.80%,kappa系数也达到了0.81,所有类别的生产者和用户精度相比于最大似然法都有提高。研究表明,证据推理方法在遥感分类精度和分类灵活性方面都具有优越性。 Remote sensing classification is always a core problem in the remote sensing research field.However,traditional classification method should be caught into question when the context information is complex.Besides the classification accuracy is not ideal,there is also a classification flexibility problem.This paper introduced an evidential reasoning "soft" classification method which has a high degree of flexibility for classification.The results can be adjusted easily for improved classification accuracy based on users' knowledge and experience combined with visual interpretation.We chose a TM image of Xiaoxinganling mountain area to assess the performance of evidential reasoning classification method.The TM image spectral characteristic of typical surface categories of the study area was analyzed,and the results showed that the spectra overlap phenomenon was serious for each band.We chose the 4,5,7 band with light spectra overlap phenomenon as evidence sources.Through the combination rule of evidence,we got distribution maps of cumulative belief value for different categories.Then we produced a theme classification map with the maximum cumulative belief value as pixels divided rule.We compared classification accuracy between maximum likelihood classification(MLC) and evidential reasoning(ER) based on confusion matrix,and the results illustrated that the overall accuracy improved from 78.74% of MLC to 82.28%,the kappa coefficient also improved from 0.67 to 0.71.For a better accuracy,we set different CBV thresholds of different categories based on visual interpretation and "soft" classification mode,and produced a higher classification accuracy map with 87.80 % overall accuracy and 0.81 kappa coefficient.This study proved that the evidential reasoning method has more advantages than traditional the method,not only in its classification accuracy,but also in its flexibility in remote sensing classification processing.
出处 《地球信息科学学报》 CSCD 北大核心 2010年第6期843-849,共7页 Journal of Geo-information Science
基金 吉林省社科基金项目(2009B225) 吉林省教育科学"十一五"规划课题(GH08206) 吉林省高等教育教学研究课题(2008316)
关键词 证据推理 遥感分类 “软”分类 最大似然法分类 分类精度 evidential reasoning remote sensing classification "soft" classification maximum likelihood classification classification accuracy
  • 相关文献

参考文献25

  • 1邓文胜,邵晓莉,刘海,万诰方,许亮.基于证据理论的遥感图像分类方法探讨[J].遥感学报,2007,11(4):568-573. 被引量:10
  • 2王海晖,彭嘉雄,吴巍.基于证据理论的信息融合在图像分类中的应用[J].计算机工程与应用,2003,39(33):11-14. 被引量:3
  • 3方勇.证据推理应用于多源信息融合分析[J].遥感学报,2000,4(2):106-111. 被引量:16
  • 4Bilal Al Momani,Sally McClean,Philip Morrow.Using Dempster–Shafer to incorporate knowledge into satellite image classification[J]. Artificial Intelligence Review . 2006 (1-2)
  • 5Lein J K.Applying Evidential Reasoning Methods to Ag-ricultural Land Cover Classification. InternationalJournal of Remote Sensing . 2003
  • 6Foschi P G,Smith D K.Detecting Subpixel WoodyVegetation in Digital Imagery Using Two Artificial Intelli-gence Approaches. Photogrammetric Engineering andRemote Sensing . 1997
  • 7Foody G M.The Continuum of Classification Fuzziness inThematic Mapping. Photogrammetric Engineering andRemote Sensing . 1999
  • 8Gopal S,Woodcock C E,Strahler A H.Fuzzy NeuralNetwork Classification of Global Land Cover from a 1 De-grees AVHRR Data Set. Remote Sensing of Environ-ment . 1999
  • 9Triepke F J,Brewer C K,Leavell D Met al.MappingForest Alliances and Associations Using Fuzzy Systemsand Nearest Neighbor Classifiers. Remote Sensing ofEnvironment . 2008
  • 10Sun W X,Liang S L,Xu G,et al.Mapping Plant Func-tional Types from MODIS Data Using Multisource Eviden-tial Reasoning. Remote Sensing of Environment . 2008

二级参考文献16

  • 1方勇.遥感图像分析中的多源数据融合技术研究[M].郑州测绘学院,1998..
  • 2方勇,学位论文,1998年
  • 3Lee T,IEEE TGRSGE25,1987年,3期
  • 4孙家抦.遥感原理与方法[M].武汉:武汉大学出版社,2003.
  • 5Richards A.Remote Sensing Digital Image Analysis:an Introduction[M].2nd Ed.,Berlin:Springer-Verlag,1993.
  • 6Yager R J,Kacprzyk J,Fedrizzi M.Advances in the Dempster-Shafer Theory of Evidence[M].New York:John Wiley and Sons,1994.
  • 7Lein J.Environmental Decision Making:an Information Technology Approach[M].Malden,MA:Blackwell Science.,1997.
  • 8Sarabjot S Anand,David A Bell,John G Hughes.EDM:a General Framework for Data Mining Based on Evidence Theory[J].Data & Knowledge,1996,18:189-223.
  • 9Mertikas P,Zervakis M E.Exemplifying the Theory of Evidence in Remote Sensing Image Classification[J].Int.J.Remote Sensing,2001,22(6):1081-1095.
  • 10Shafer G.Mathematical Theory of Evidence[M].Princeton,New Jersey:Princeton University Press.,1976.

共引文献25

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部