期刊文献+

大业务流识别方法研究综述 被引量:2

Survey of identifying method for measurement of heavy-hitter traffic flow
下载PDF
导出
摘要 大业务流识别(简称大流识别)方法是网络流量测量与分析中必不可少的一种方法和手段,在学术界和工业界都引起了广泛的关注。针对大流识别问题展开研究,对适用于网络监控和管理需求的大流识别的方法、成果和相关问题进行综述,分类分析和总结了典型的大流识别方法,并指出这些方法存在的局限性和不足,对下一步研究趋势进行了预测。 The method of heavy-hitter flow identification is important to network traffic measurement and analysis, and it al- ready receives much more attention recently. This paper focused on the method of heavy-hitter flow identification, and provided a brief survey of the work on identification algorithms adapted by heavy-hitter traffic flow. Analyzed some typical algorithms specifically and presented their limitations. Finally, this paper offered some advice for the future work and challenge.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期6-9,共4页 Application Research of Computers
基金 中国科学院重大科研装备研制项目(YZ200824) 国家自然科学基金资助项目(61070237)
关键词 大业务流 网络监控 识别方法 flow heavy-hitter flow network monitoring identifying method
  • 相关文献

参考文献25

  • 1CLAFFY K,BRAUN H,POLYZOS G.A parameterizable methodology for Internet traffic flow profiling[J].IEEE Journal on Selected Areas in Communications,1995,13(8):1481-1494.
  • 2BHATTACHARYYA S,DIOT C,JETCHEVA J.Pop-level and access-link-level trac dynamics in a tier-1 POP[C]//Proc of the 1st ACM SIGCOMM Internet Measurement Workshop.New York:ACM Press,2001:39-53.
  • 3FRED S B,BONALD T,PROUTIERE A,et al.Statistical bandwidth sharing:a study of congestion at flow level[C]//Proc of Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications.2001:111-122.
  • 4MORI T,KAWAHARA R,NAITO S,et al.On the characteristics of Internet traffic variability:spikes and elephants[C]//Proc of International Symposium on Applications and Internet.2004:99-106.
  • 5PAPAGIANNAKI K,TAFT N,BHATTACHARYA S,et al.On the feasibility of Identifying elephants in Internet backbone traffic,TR01-ATL-110918[R].[S.l.]:Sprint Labs, 2001.
  • 6THOMPSON K,MILLER G L,WILDER R.Wide-area Internet traffic patterns and characteristics[J].IEEE Network,1997,11(6):10-23.
  • 7ZHANG Yin,BRESLAU L,PAXSON V,et al.On the characteristics and origins of Internet flow rates[C]//Proc of Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications.2002:309-322.
  • 8LAN K C,HEIDEMANN J.On the correlation of Internet flow characteristics,ISI-TR-574[R].[S.l.]:USC/Information Sciences Institute,2003.
  • 9FANG Wen-jia,PETERSON L.Inter-AS trac patterns and their implications[C]//Proc of IEEE Global Internet Symposium.1999.
  • 10BROWNLEE N,CLAFFY K.Understanding Internet traffic streams:dragonies and tortoises[J].IEEE Communications Magazine,2002,40(10):110-117.

二级参考文献30

  • 1潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 2王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法[J].软件学报,2007,18(4):884-892. 被引量:33
  • 3王洪波,裴育杰,林宇,程时端,金跃辉.基于LRU的大流检测算法[J].电子与信息学报,2007,29(10):2487-2492. 被引量:16
  • 4Cormode G,Muthukrishnan S.MassDAL public code bank. http://www.cs.rutgers.edu/~muthu/massdal.html .
  • 5Cormode G,Hadjieleftheriou M.Finding frequent items in data streams:Source code. http://www.research.att.com/~marioh/frequent-items/index.html .
  • 6CAIDA anonymized OC48 Internet traces dataset. http://www.caida.org/data/passive/passive_oc48_dataset.xml .
  • 7CAIDA anonymized 2008 Internet traces dataset. http://www.caida.org/data/passive/passive_2008_dataset.xml .
  • 8Sommer R,Feldmann A.NetFlow:information loss or win?. Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement . 2002
  • 9Fred S,Bonald T,Proutiere A,et al.Statistical bandwidth sharing:a study of congestion at flow level. ACM SIGCOMM Computer Communication Review . 2001
  • 10Papagiannaki K,Taft N,Bhattachayya S,et al.On the feasibility of identifying elephants in Internet backbone trafc. Sprint ATL Technical Report TR01-ATL-110918 . 2001

共引文献10

同被引文献24

  • 1谢鲲,张大方,文吉刚,谢高岗.基于WinPcap的实时网络监测系统[J].湖南大学学报(自然科学版),2006,33(2):118-121. 被引量:11
  • 2王洪波,裴育杰,林宇,程时端,金跃辉.基于LRU的大流检测算法[J].电子与信息学报,2007,29(10):2487-2492. 被引量:16
  • 3王风宇,云晓春,王晓峰,王勇.高速网络监控中大流量对象的提取[J].软件学报,2007,18(12):3060-3070. 被引量:22
  • 4Yang L, Micahilidis G. Sampled Based Estimation ofNetwork Traffic Flow Characteristics [ C 1//Proceedings of the 26th IEEE International Conference on Computer Communications. Washington D. C. , USA : IEEE Press, 2007 : 1775-1783.
  • 5Mori T, Uchida M, Kawahara R. Identifying Elephant Flows Through Periodically Sampled Packets [ C 1// Proceedings of ACM IMC ' 04. New York, USA : ACM Press ,2004 : 115-120.
  • 6Estan C, Varghese G. New Directions in Traffic Measurement and Accountinga: Focusing on the Elephants, Ignoring the Mice [ J 1 : ACM Transactions on Computer System ,2003,21 ( 3 ) :270-313.
  • 7Kim S I,Reddy N A L. Identifying Long-term High-band- width Flows at a Router : C]//Proceedings of the 8th International Conference on High Performance Computing. Hyderabad,India: I s. n. ] ,2001:361-371.
  • 8Che L C,Qiu B. Landmark LRU: An Efficient Scheme for the Detection of Elephant Flows at Internet Routers [ J ]. IEEE Communication Letters, 2006,10 ( 7 ) : 567 -569.
  • 9Kummar A,Xu J, Wang J, et al. Space-code Bloom Filter for Efficient Per-flow Traffic Measurement [ C]//Procee- dings of IEEE INFOCOM' 04. Washington D. C. , USA: IEEE Press ,2004 : 1762-1773.
  • 10Sun Y, Zhang Z B, Guo L, et al. An Effective Algorithm for Counting Active Active Flows Based on Loop Filter[C ]// Proceedings of International Conference on Networking, Architecture and Storage. Chongqing, China: [s. n. ] ,2008:104-109.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部