期刊文献+

基于属性——关系综合相似度的聚类算法 被引量:2

Clustering algorithm based on attribute-relationship integrated similarity
下载PDF
导出
摘要 为弥补属性空间聚类方法只关注对象属性信息以及结构聚类方法只关注对象间关系信息的不足,提出一种基于属性—关系综合相似度的聚类算法。在构建基于属性距离的有权网络后,算法给出对象间综合相似度以及类间综合相似度的计算方法,并设计相应策略自底向上实现聚类。与属性空间聚类和结构聚类方法相比,该算法由于兼顾了属性和关系信息而具有更高的聚类精度。与经典的基于属性—关系相似度的算法HyPursuit、M-S等相比,算法由于精简了综合相似度的计算而具有更高的效率。 In order to improve the attribute space clustering methods that focus on the attribute information only, and improve the structure clustering methods that focus on relationship only ,this paper proposed a clustering algorithm based on attribute-re- lationship integrated similarity. After setting up the weighted network based on attribute distance, the algorithm showed how to calculate the integrated similarity between objects and between clusters, and provided appropriate strategy to aggregating clusters from bottom up. In comparison with attribute space clustering methods and structure clustering methods, the algorithm has higher accuracy for considering more information. In comparison with classic method based on attribute-relationship similarity like HvPursuit or M-S, the algorithm has better efficiency for simplifving the computing process of integrated similaritv.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期44-47,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(70771007)
关键词 数据挖掘 聚类 基于属性距离的有权网络 综合相似度 data mining clustering weighted network based on attribute distance integrated similarity
  • 相关文献

参考文献17

  • 1EVERITT B.Cluster analysis[M].London: Heinemann Educational Books Ltd,1974.
  • 2ANDERBERG M.Cluster analysis for applications[M].New York:Academic Press,1973.
  • 3ZHANG Tian,RAMAKRISHNAN R,LINVY M.BRICH:an efficient data clustering method for very large database[C]//Proc of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,1996:103-114.
  • 4GUHA S,RASTOGI R,SHIM K.Cure:an efficient clustering algorithm for large database[J].Information Systems,2001,26(1):35-58.
  • 5KARYPIS G,HAN E,KUMAR V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].IEEE Computer,1999,32(8):68-75.
  • 6NEWMAN M.Detecting community structure in networks[J].European Physical Journal(B),2004,38(2):321-330.
  • 7NEWMAN M.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69(6):66-133.
  • 8GUIMERA R,AMARAL L.Functional cartography of complex metabolic networks[J].Nature,2005,433(7028):895-900.
  • 9FLAKE G,LAWRENCE S,GILES C,et al.Self-organization and identification of Web communities[J].IEEE Computer,2002,35(3):66-71.
  • 10WEISS R,VELEZ B,SHELDON M.HyPursuit:a hierarchical network search engine that exploits content-link hypertext clustering[C]//Proc of the 7th ACM Conference on Hypertext.New York:ACM Press,1996:180-193.

同被引文献15

  • 1金博,史彦军,滕弘飞.基于语义理解的文本相似度算法[J].大连理工大学学报,2005,45(2):291-297. 被引量:80
  • 2宋玲,马军,连莉,张志军.文档相似度综合计算研究[J].计算机工程与应用,2006,42(30):160-163. 被引量:43
  • 3满强.装备健康管理理论与应用研究[D].石家庄:军械工程学院.2010.
  • 4吴波.装备健康状态评估及应用研究[D].石家庄:军械工程学院,2009.
  • 5夏良华.复杂装备状态维修及健康管理研究[R].石家庄:军械工程学院,2007:1-40.
  • 6齐伟伟.基于云模型和SVR的装备健康状态评估与预测方法研究[D].石家庄:军械工程学院,201l:42-50.
  • 7甘茂治,康建设,高崎.军用装备维修工程学[M].2版.北京:国防工业出版社,2005.
  • 8MODHA D, SPANGLER W. Clustering hypertext with applications to Web searching: USA, 2004 /0049503 AI[P]. 2004: 3-11.
  • 9TASKAR B, SEGAL E, KOLLER D. Probabilistic clustering in relational data[C] Proc of the 17th International Joint Conference on Artificial Intelligence. 2001: 870-887.
  • 10HE Xiao-feng, DING C, ZHA Hong-yuan, et al. Automatic topic identification using webpages clustering[C] Proc of IEEE International Conference on Data Mining. San Jose: IEEE Computer Science, 2001:195-202.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部