期刊文献+

基于自适应自然梯度法的在线高斯过程建模 被引量:3

Online learning algorithm of Gaussian process based on adaptive nature gradient
下载PDF
导出
摘要 为了满足在线建模算法的实时性要求,提出了在高斯过程的训练中使用自适应自然梯度法(ANG),即基于自适应自然梯度法的在线高斯过程回归建模算法。将此算法运用在Micky-Glass系统和连续搅拌反应釜(CSTR)模型的建立中,并与稀疏在线高斯过程算法进行比较。仿真结果表明此算法满足了非线性系统建模的实时性和精度的要求,同时克服了其他方法计算量很大、不符合在线算法的实时性要求的缺点。 In order to satisfy the online modeling algorithm' s request of real-time, this paper proposed the adaptive natural gradient method used in online Gaussian process training. The algorithm was named online learning algorithm of Gaussian process based on adaptive nature gradient. The algorithm was applied in Micky-Glass system and continuous stirred tank reactor (CSTR) modeling,and compared with the sparse online Ganssian processes algorithm. Obtained from the simulation results, this algorithm meets the real-time and accuracy requirements of nonlinear system modeling, and overcomes other online algorithms' faults of needing much computation resource and not to accord with the requirement of real-time of online algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期95-97,120,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60704012 60574019) 广东省自然科学基金资助项目(06300232) 中央高校科研业务费资助项目(2009zm0161)
关键词 在线高斯过程 建模 自适应自然梯度法 Micky—Glass系统 CSTR建模 online Gaussian process modeling adaptive natural gradient Micky-Glass system CSTR modeling
  • 相关文献

参考文献10

  • 1MACKEY D J C.Introduction to Gaussian processes[C]//Neural Networks and Machine Learning.Berlin:Springer,1998:133-165.
  • 2GIRARD A,RASMUSSEN C E,QUIRIONERO-CANDELA J,et al.Gaussian process priors with uncertain inputs:application to multiple-step ahead time series forecasting[C]//Proc of the 16th Annual Conference on Neural Information Processing Systems.Combridge:MIT Press,2003.
  • 3NEAL R M.Bayesian learning for neural networks [D].Toronto:University of Toronto,1995.
  • 4SEEGER M.Gaussian processes for machine learning[J].International Journal of Neural System,2004,14(2):69-106.
  • 5王华忠.高斯过程及其在软测量建模中的应用[J].化工学报,2007,58(11):2840-2845. 被引量:22
  • 6KOCIJAN J,MURRAY-SMITH R,RASMUSSEN C E,et al.Gaussian process model based predictive control[C]//Proc of the American Control Conference.Boston:Concentration Banking Info,2004.
  • 7OPPER M,WINTHER O.Gaussian processes for classification:mean-field algorithms[J].Neural Computation,2000,12(11):2655-2684.
  • 8CSATO L,OPPER M.Sparse on-line Gaussian processes[J].Neural Computation,2002,14(3):641-668.
  • 9AMARI S,DOUGLAS S C.Why natural gradient?[C]//Proc of IEEE International Conference on Acoustics,Speech and Signal Processing.1998:1213-1216.
  • 10JIANG Jing-qing,SONG Chu-yi,ZHAO Hai-yan,et al.Adaptive and iterative least squares support vector regression based on quadratic Renyi entropy[C]//Proc of IEEE International Conference on Granular Computing.2008:340-345.

二级参考文献15

  • 1熊志化,张继承,邵惠鹤.基于高斯过程的软测量建模[J].系统仿真学报,2005,17(4):793-794. 被引量:37
  • 2颜学峰,余娟,钱锋.优选优生进化算法及4-CBA软测量模型参数估计[J].高校化学工程学报,2005,19(2):238-243. 被引量:5
  • 3王华忠,俞金寿.基于混合SVR-PLS方法的丙烯腈收率软测量建模[J].控制与决策,2005,20(5):549-552. 被引量:10
  • 4马勇,黄德先,金以慧.动态软测量建模方法初探[J].化工学报,2005,56(8):1516-1519. 被引量:27
  • 5Brosillow C B. Inferential control of process. AIChE J. , 1978, 24 (3): 485-509.
  • 6Kresta J V, Martin T E, MacGregor J F. Development of inferential process models using PLS. Computers and Chemical Engineering, 1994, 18 (7): 597-611.
  • 7Willis M J, Montague G A, Massimo D C, etal. Artificial neural networks in process estimation and control. Automatica, 1992, 28 (6): 1181-1187.
  • 8Liu Ruilan, Su Hongye, etal. Fuzzy neural network model of 4-CBA concentration for industrial PTA oxidation process. Chinese Journal of Chemical Engineering, 2004, 12 (2): 234-239.
  • 9Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns. Control Engineering Practice, 2005, 13 (4) : 499-508.
  • 10Desai K, Badhe Y, Tamble S S, et al. Soft sensordevelopment for fed-batch bioreactors using support vectorregression. Biochemical Engineering Journal, 2006, 27 (3):225-239.

共引文献21

同被引文献81

  • 1张伟,胡昌华,焦李成.最小二乘AR模型的惯性器件故障预测[J].仪器仪表学报,2006,27(z2):1755-1757. 被引量:5
  • 2罗健旭,邵惠鹤.软测量建模数据的过失误差侦破——一种基于聚类分析的方法[J].仪器仪表学报,2005,26(3):238-241. 被引量:9
  • 3苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 4XIE Zhi-peng,HSU W,LIU Zong-tian,et al.SNNB:a selectiveneighborhood based naive Bayes for lazy learning[C]//Proc of the6th Pacific-Asia Conference on Advances in Knowledge Discovery andData Mining.2002:104-114.
  • 5JIANG Liang-xiao,ZHANG H,CAI Zhi-hua.Dynamic K-nearest-neighbor naive Bayes with attribute weighted[C]//Proc of the 3rd In-ternational Conference on Fuzzy Systems and Knowledge Discovery.Berlin:Spinger,2006:365-368.
  • 6CHISCI L,MAVINO A,PERFERI G,et al.Real-time epileptic seizureprediction using AR models and support vector machines[J].IEEETrans on Biomedical Engineering,2010,57(5):1124-1132.
  • 7WANG Ling,FU Dong-mei.Estimation of missing values using aweighted K-nearest neighbors algorithm[C]//Proc of InternationalConference on Environmental Science and Information ApplicationTechnology.2009:660-663.
  • 8Williams C K I, Rasmussen C E. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.
  • 9Kocijan J. Control algorithms based on Gaussian process models: A state-of-the-art survey[C].Proc of the Special Int Conf on Complex Systems: Synergy of Control, Communications and Computing. Ohrid, 2011: 69-80.
  • 10Park C W, Huang J H Z, Ding Y. Domain decomposition approach for fast Gaussian process regression of large spatial data sets[J]. J of Machine Learning Research, 2011, 12: 1697-1728.

引证文献3

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部