期刊文献+

基于PCA的可变框架模型Retinex图像增强算法 被引量:5

Variation modal Retinex image enhancement algorithm based on PCA
下载PDF
导出
摘要 针对恶劣天气下拍摄图像的退化现象,提出了一种基于主成分分析(principal component analysis,PCA)的可变框架模型Retinex图像增强算法。PCA变换提供通道间良好的正交性,可避免由于亮度调整带来的色度失真。该算法通过PCA变换得到图像亮度分量、色度分量,对得到的亮度分量使用改进的可变框架模型Retinex进行处理,适当调整色度分量,最后对处理得到的RGB图像进行去相关拉伸。实验结果表明,该方法能有效改善恶劣天气造成的图像退化现象,提高图像的清晰度。 For the degradation of images taken under bad weather, this paper proposed a variation modal Retinex image enhancement algorithm based on PCA. PCA transformation provided orthogonality between channels and avoided producing incorrect colors despite the modification of luminance. Firstly, it utilized the PCA transformation to get the luminance component and the chrominance components. Secondly, processed the luminance component with improved variation modal Retinex image enhancement algorithm, and adjusted the chrominance components appropriately. Finally, processed the RGB image with decorrelation stretch. Experimental resuhs show that the method can effectively ameliorate the image degradation taken under bad weather and improve image clarity.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期395-397,共3页 Application Research of Computers
基金 国家自然科学基金重大专项重点资助项目(90820302)
关键词 图像增强 RETINEX理论 主要成分分析 可变框架模型 去相关拉伸 image enhancement Retinex theory PCA variation modal decorrelation stretch
  • 相关文献

参考文献12

  • 1TAN K, OAKLEY J P.Enhancement of color image in poor visibility condition[C]//Proc of IEEE International Conference on Image Processing.2000:788-791.
  • 2NARASIMHAN S G, NAYAR S K.Contrast restoration of weather degraded images[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(6):715-720.
  • 3NARASIMHAN S G, NAYAR S K.Interactive (de)weathering of an image using physical model[C]//Proc of the ICCV Workshop on Color and Photometric Methods in Computer Vision.2003:3-7.
  • 4祝培,朱虹,钱学明,李晗.一种有雾天气图像景物影像的清晰化方法[J].中国图象图形学报(A辑),2004,9(1):124-128. 被引量:115
  • 5JOBSON D J, RAHMAN Z U, WOODELL G A.Properties and performance of a center/surround Retinex[J].IEEE Trans on Image Processing,1997,6(3):456-462.
  • 6JOBSON D J, RAHMAN Z U,WOODELL G A.A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J].IEEE Trans on Image Processing,1997,6(7):969-976.
  • 7RAHMAN Z U, JOBSON D J , WOODELL G A.Retinex processing for automatic image enhancement[J].Journal of Electronic Imaging,2004,13(1):100-107.
  • 8LAND E H.The Retinex theory of color vision[J].Scientific American,1977,237(6):108-118.
  • 9KIMMEL R,SHAKED D,ELAD M, et al.A variational framework for Retinex[J].International Journal of Computer Vision,2003,52(1):11-19.
  • 10BUCHSBAUM G, GOTTSCHALK A.Trichromacy, opponent colours coding and optimum colour information transmission in the Retina[C]//Proc of the Royal Society of London.1983:89-113.

二级参考文献4

  • 1Oakley John P, Satherley Brenda L.Improvlng image quality in poor visibility conditions using a physical model for contrast degrsdation [J]. IEEE Transactions on Image Processing, 1998,7(2):167-179.
  • 2Narasimhan Srinivasa G, Nayar Shree K. Removing weather effects from monochrome images [A]. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Reeognition[C], Kauai, Hawaii, USA, 2001,186 -193.
  • 3Kim Tae Keun, Paik Joon Ki, Kang Bong Soon. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering [J]. IEEE Transactions on Consumer Electronics, 1998,44(1): 82-86.
  • 4Kim Joung-Youn, Kim Lee-Sup, Hwang Seung-Ho. An advaneed eontrast enhaneement using partially overlapped subblock histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001,11 (4) :475-484.

共引文献114

同被引文献56

  • 1刘晓阳,刘毅.改进的脉冲耦合神经网络矿工图像增强方法[J].煤炭学报,2011,36(S1):207-210. 被引量:5
  • 2于海征.基于奇异值分解的数字图像的特征提取[J].工程数学学报,2004,21(F12):131-134. 被引量:12
  • 3王萍,程号,罗颖昕.基于色调不变的彩色图像增强[J].中国图象图形学报,2007,12(7):1173-1177. 被引量:13
  • 4XU L, KRZYZAK A, SUEN C Y. Methods of combining muhir, le classifiers and their applications to handwriting recognition[ J1. IEEE Trans on Systems, Man, and Cybernetics, 1992,22 ( 3 ) :418- 435.
  • 5HOT K, HULl, J J, SRIHARI S N. Decision combination in muhiple classifier systems[J]. IEEE Trans on Pattern Analysis and Ma- chino Intelligence, 1994,16(6) :66-75.
  • 6KI'ITLER J. Improving recognition rates by classifier combination: a theoretical framework [ J ]. Progress in Handwriting Recognition World Scientific, 1997,35 ( 3 ) :231 - 248.
  • 7DIETI'ERICH T. An experimental comparison of three methods for construction ensembles of decision trees: bagging, boosting, and ran- domization [ J ]. Machine Learning, 2000,40 ( 2 ) : 139-157.
  • 8BROWN G, WYATI" J, HARRIS R, et al. Diversity creation meth- otis: a survey and categorization [ J ]. Information Fusion: A spe- cial issue on diversity in multiple classifier system,2005,6 ( 1 ) : 5-20.
  • 9HOT H. The random subspace method for constructing decision for- ests[J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1998,20 ( 8 ) : 832- 844.
  • 10HU Qing-hua, YU Da-ren. Diversity measure for multiple classifier systems[ C]//Proc of LNCS, vol 3613. Berlin : Springer,2005.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部