期刊文献+

基于极大似然线性回归的模型合成和特征映射进行说话人确认 被引量:2

Speaker verification using speaker model synthesis and feature mapping based on maximum-likelihood linear regression
下载PDF
导出
摘要 提出了基于极大似然线性回归(MLLR)调整的说话人模型合成和特征映射方法。MAP调整事后确定相应模型间线性关系,变换参数人为确定;而MLLR调整首先确定相应模型间线性关系,变换参数由训练数据确定,并且可以只调整均值向量。模型合成时,MLLR调整指定通用信道背景模型参数间的线性变换;特征映射时,MLLR调整指定Root GMM-UBM与通用信道背景模型参数间的线性变换。通过对模型参数进行分组调整,可以在训练数据和参数数目间达成平衡。实验结果表明,合适选取MLLR回归类,可以取得比相应MAP调整方法更好的识别效果。 This paper proposes new methods of speaker verification,which use speaker model synthesis(SMS) and feature mapping based on maximum-likelihood linear regression.MAP method determines a linear relationship among the corresponding models after adjustment and transformation parameters are determined artificially,while MLLR first identify a linear relationship among the corresponding models and transformation parameters are determined from the training data,also it can only adjust the mean vectors.In SMS,MLLR determines transformation parameters among different channel UBMs.In feature mapping,MLLR determines transformation parameters between Root GMM-UBM and the channel UBM.By grouping to the model parameters,it can reach a balance between the training data and the number of parameters.The experimental results show that MLLR adjustment can achieve better verification effect than MAP adjustment by selecting the appropriate classes of regression.
出处 《声学学报》 EI CSCD 北大核心 2011年第1期81-87,共7页 Acta Acustica
基金 国家自然科学基金(60872073 60975017 51075068) 江苏省自然科学基金(BK2008291)资助项目
关键词 模型参数 说话人确认 特征映射 线性回归 极大似然 合成 MLLR 线性关系 Mapping Maximum likelihood Metadata Regression analysis Speech recognition
  • 相关文献

参考文献20

  • 1Jayanna H S,,Mahadeva S R.Analysis,feature extraction, modeling and testing techniques for speaker recognition. IETE Technical Review . 2009
  • 2Reynolds D A.Channel robust speaker verification via feature mapping. Proceedings of ICASSP . 2003
  • 3Ferras M,Leung C C,Barras C,Gauvain J L.Constrained MLLR for speaker recognition. Proceedings of ICASSP . 2007
  • 4ZHU Donglai,MA Bin,LI Haizhou,HUO Qiang.A generalized feature transformation approach for channel robust speaker verification. Proceedings of ICASSP . 2007
  • 5Mak Man-Wai,Yiu Kwok-Kwong,Sun-Yuan Kung.Probabilistic feature-based transformation for channel robust speaker verification over telephone networks. Neurocomputing . 2007
  • 6Gales M.The generation and use of regression class trees for MLLR adaptation. Technical Report,CUED/FINFENG/ TR263,Cambridge University . 1996
  • 7Stolcke A,Ferrer L,Kajarekar S.Improvements inMLLR-transform-based speaker recognition. Proc IEEEOdyssey-The Speaker and Language Recognition Workshop . 2006
  • 8Kajarekar, S.S,Scheffer, N,Graciarena, M.THE SRI NIST 2008 speaker recognition evaluation system. IEEE International Conference on Acoustics, Speech and Signal Processing . 2009
  • 9A. Mandal,M. Ostendorf,A. Stolcke.Improving robustness of MLLR adaptation with speaker-clustered regression class trees. Computer Speech and Language . 2009
  • 10Heck,L.P.,Weintraub,M.Handset-dependent background models for robust textindependent,speaker recognition. Proceedings of the International Conference on Acoustics,Speech and Signal Processing . 1997

同被引文献25

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部